1
|
Modica R, La Salvia A, Liccardi A, Cozzolino A, Di Sarno A, Russo F, Colao A, Faggiano A. Dyslipidemia, lipid-lowering agents and neuroendocrine neoplasms: new horizons. Endocrine 2024; 85:520-531. [PMID: 38509261 PMCID: PMC11291585 DOI: 10.1007/s12020-024-03767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies originating from cells with a neuroendocrine phenotype. The complex relationship between lipid metabolism and cancer is gaining interest and a potential anti-cancer effect of lipid lowering agents is being considered. This review aims to discuss the current understanding and treatment of dyslipidaemia in NENs, focusing on the role of lipid lowering agents, including new therapeutic approaches, and future perspectives as possible tool in cancer prevention and tumor-growth control. METHODS We performed an electronic-based search using PubMed updated until December 2023, summarizing the available evidence both in basic and clinical research about lipid lowering agents in NENs. RESULTS Dyslipidemia is an important aspect to be considered in NENs management, although randomized studies specifically addressing this topic are lacking, unlike other cancer types. Available data mainly regard statins, and in vitro studies have demonstrated direct antitumor effects, including antiproliferative effects in some cancers, supporting possible pleiotropic effects also in NENs, but data remain conflicting. Ezetimibe, omega 3-fatty acids, fibrates and inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) may enhance the regulation of lipid homeostasis, as demonstrated in other cancers. CONCLUSIONS Targeting dyslipidemia in NENs should be part of the multidisciplinary management and an integrated approach may be the best option for both metabolic and tumor control. Whether lipid lowering agents may directly contribute to tumor control remains to be confirmed with specific studies, focusing on association with other metabolic risk, disease stage and primary site.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy.
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), 00161, Rome, Italy
| | - Alessia Liccardi
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
| | - Alessia Cozzolino
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Antonella Di Sarno
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
| | - Flaminia Russo
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189, Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, 80131, Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189, Rome, Italy
| |
Collapse
|
2
|
Kiba Y, Tanikawa T, Hayashi T, Kamauchi H, Seki T, Suzuki R, Kitamura M. Inhibition of furin-like enzymatic activities and SARS-CoV-2 infection by osthole and phenolic compounds with aryl side chains. Biomed Pharmacother 2023; 169:115940. [PMID: 38007936 DOI: 10.1016/j.biopha.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread as a pandemic and caused damage to people's lives and countries' economies. The spike (S) protein of SARS-CoV-2 contains a cleavage motif, Arg-X-X-Arg, for furin and furin-like enzymes at the boundary of the S1/S2 subunits. Given that cleavage plays a crucial role in S protein activation and viral entry, the cleavage motif was selected as the target. Our previous fluorogenic substrate study showed that osthole, a coumarin compound, inhibits furin-like enzyme activity. In this study, we examined the potential activities of 15 compounds with a structure-activity relationship with osthole, and evaluated their protective ability against SARS-CoV-2 infection. Of the 15 compounds tested, compounds C1 and C2 exhibited the inhibitory effects of osthole against furin-like enzymatic activity; however, little or no inhibitory effects against furin activity were observed. We further examined the inhibition of SARS-CoV-2 activity by compounds C1 and C2 using a Vero E6 cell line that expresses the transmembrane protease serine 2 (TMPRSS2). Compounds C1, C2, and osthole effectively inhibited SARS-CoV-2 infection. Therefore, osthole and its derivatives can potentially be used as therapeutic agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuka Kiba
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University; 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Takashi Tanikawa
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University; 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitoshi Kamauchi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado City, Saitama 350-0295, Japan
| | - Taishi Seki
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University; 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ryuichiro Suzuki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado City, Saitama 350-0295, Japan
| | - Masashi Kitamura
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University; 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
3
|
Qiu H, Shao Z, Wen X, Liu Z, Chen Z, Qu D, Ding X, Zhang L. Efferocytosis: An accomplice of cancer immune escape. Biomed Pharmacother 2023; 167:115540. [PMID: 37741255 DOI: 10.1016/j.biopha.2023.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
The clearance of apoptotic cells by efferocytes such as macrophages and dendritic cells is termed as "efferocytosis", it plays critical roles in maintaining tissue homeostasis in multicellular organisms. Currently, available studies indicate that efferocytosis-related molecules and pathways are tightly associated with cancer development, metastasis and treatment resistance, efferocytosis also induces an immunosuppressive tumor microenvironment and assists cancer cells escape from immune surveillance. In this study, we reviewed the underlying mechanisms of efferocytosis in mediating the occurrence of cancer immune escape, and then emphatically summarized the strategies of using efferocytosis as therapeutic target to enhance the anti-tumor efficacies of immune checkpoint inhibitors, hoping to provide powerful evidences for more effective therapeutic regimens of malignant tumors.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhengyang Liu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziqin Chen
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
PCSK9 Inhibitors in Cancer Patients Treated with Immune-Checkpoint Inhibitors to Reduce Cardiovascular Events: New Frontiers in Cardioncology. Cancers (Basel) 2023; 15:cancers15051397. [PMID: 36900189 PMCID: PMC10000232 DOI: 10.3390/cancers15051397] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer patients treated with immune checkpoint inhibitors (ICIs) are exposed to a high risk of atherosclerosis and cardiometabolic diseases due to systemic inflammatory conditions and immune-related atheroma destabilization. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein involved in metabolism of low-density lipoprotein (LDL) cholesterol. PCSK9 blocking agents are clinically available and involve monoclonal antibodies, and SiRNA reduces LDL levels in high-risk patients and atherosclerotic cardiovascular disease events in multiple patient cohorts. Moreover, PCSK9 induces peripheral immune tolerance (inhibition of cancer cell- immune recognition), reduces cardiac mitochondrial metabolism, and enhances cancer cell survival. The present review summarizes the potential benefits of PCSK9 inhibition through selective blocking antibodies and siRNA in patients with cancer, especially in those treated with ICIs therapies, in order to reduce atherosclerotic cardiovascular events and potentially improve ICIs-related anticancer functions.
Collapse
|