1
|
Nair SK, Hersh EV, Margulies KB, Daniell H. Clinical studies in Myxomatous Mitral Valve Disease dogs: most prescribed ACEI inhibits ACE2 enzyme activity and ARB increases AngII pool in plasma. Hypertens Res 2025; 48:1477-1490. [PMID: 39837966 PMCID: PMC11972962 DOI: 10.1038/s41440-025-02109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
The hypertension patient population has doubled since 1990, affecting 1.3 billion globally and >75% live in low-and middle-income countries. Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) are the most prescribed drugs (>160 million times in the US), but mortality increased >30% since 1990s globally. Clinical relevance of Myxomatous Mitral Valve Disease (MMVD) is directly linked to WHO group 2 pulmonary hypertension, with no disease specific therapies. Therefore, MMVD pet dogs with elevated systolic blood pressure treated with ACEI/ARB, were supplemented with oral ACE2 enzyme and Angiotensin1-7 (Ang1-7) bioencapsulated in plant cells. The oral ACE2/Ang1-7 was well tolerated by healthy and MMVD dogs with no adverse events and increased sACE2 activity by 670-755% with ARB (Telmisartan) than with ACEI (Enalapril) background therapy. In vitro rhACE2 activity was inhibited >90% by ACEIs enalapril/benazeprilat at higher doses but lisinopril inhibited at much lower doses. Membrane ACE2 activity evaluated in exosomes was 43-fold higher than the sACE2 and this was also inhibited 211% by ACEI, when compared to ARB. Background ACEI treatment reduced the Ang-II pool by 11-20-fold and proportionately decreased the abundance of Ang1-7 + Ang1-5 peptides. In contrast, ARB treatment increased Ang-II pool 11-20-fold and Ang1-7 + Ang1-5 by 160-260%. Systolic blood pressure was regulated by ARB better than ACEI, despite very high Ang-II levels. This first report on evaluation of metabolic pools in the RAS pathway identifies surprising interactions between ACEI/ARB/ACE2 and significant changes in key molecular dynamics. Affordable biologics developed in plant cells may offer potential new treatment options for hypertension.
Collapse
Affiliation(s)
- Smruti K Nair
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elliot V Hersh
- Department of Oral Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Li J, Guo Y, Yang Y, Xue Q, Cao H, Yang G, Jia L, Yu H. Preconditioning with acteoside ameliorates myocardial ischemia‑reperfusion injury by targeting HSP90AA1 and the PI3K/Akt signaling pathway. Mol Med Rep 2025; 31:77. [PMID: 39886969 PMCID: PMC11795246 DOI: 10.3892/mmr.2025.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
The present study aimed to investigate the cardioprotective effects of acteoside (AC) on myocardial ischemia‑reperfusion injury (MIRI). To meet this aim, a network pharmacological analysis was conducted to search for key genes and signaling pathways associated with AC and MIRI. The infarct size of the rat heart was evaluated using 2,3,5‑triphenyltetrazolium chloride staining, and the serum levels of creatine kinase MB isoenzyme, cardiac troponin I, malondialdehyde and superoxide dismutase were subsequently detected in an in vivo experiment. The inhibitory effect of AC on oxidative stress was further confirmed by assessing the intracellular accumulation of reactive oxygen species (ROS). Hematoxylin and eosin staining was subsequently carried out to observe cardiac histopathological damage. The anti‑apoptotic effects of AC were determined using terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling assay and Hoechst 33342 staining, and the expression levels of apoptosis‑associated proteins in the myocardial tissue were assessed using immunohistochemical analysis. In addition, cell viability was determined using a Cell Counting Kit‑8 assay, and the expression levels of key target proteins associated with AC and MIRI were detected by western blot analysis. The results suggested that pretreatment with AC could mitigate MIRI‑induced myocardial damage, oxidative stress and apoptosis. The anti‑apoptotic effects of AC were associated with elevated Bcl‑2 levels, and reduced caspase‑3 and Bax expression levels in myocardial tissue. In vitro, AC pretreatment both led to an increased rate of cell survival and alleviated oxidative stress, as demonstrated by a decreased level of intracellular ROS accumulation. Moreover, guided by the network pharmacological analysis, heat‑shock protein 90AA1 (HSP90AA1) and the phosphoinositide 3‑kinase (PI3K)/serine‑threonine protein kinase (Akt) signaling pathway emerged as key targets for the action of AC against MIRI. Furthermore, the western blot analysis results showed that pretreatment with AC led to a significant increase in the activity of the PI3K/Akt signaling pathway, in addition to increased expression levels of glycogen synthase kinase‑3β and HSP90AA1. Taken together, the findings of the present study revealed that AC may exert cardioprotective effects on MIRI through suppressing apoptosis and oxidative stress by regulating the expression and activity of key proteins.
Collapse
Affiliation(s)
- Jing Li
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Yuxin Guo
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Yang Yang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Qing Xue
- Department of Cardiology, The First Affiliated Hospital to Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Hong Cao
- Department of Cardiology, The First Affiliated Hospital to Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Guangyuan Yang
- Department of Cardiology, The First Affiliated Hospital to Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Linlin Jia
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
- Department of Medical Nursing, Nursing College, Zhangzhou Health Vocational College, Zhangzhou, Fujian 363000, P.R. China
| | - Haibo Yu
- Department of Cardiology, The First Affiliated Hospital to Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| |
Collapse
|
3
|
Boushra AF, Soliman GF, Ibrahim W, Rashed LA, El-Meguid EAA, Abouelela YS, Yasin NAE, Gomaa E, Ali E, Bastawy N. Angiotensin 1-7 Attenuates the Development of Ischemia-Reperfusion-Induced Arrhythmia in Rats: Electrophysiology, Molecular, and Immunohistochemical Study. Microsc Res Tech 2025. [PMID: 39871122 DOI: 10.1002/jemt.24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Arrhythmia is a common and serious global health problem, contributing to cardiovascular morbidity and mortality. The cardiac muscle is susceptible to ischemia-reperfusion (I/R) injury, which can lead to fatal arrhythmias during open-heart surgery. We investigated the potential prophylactic effect of angiotensin 1-7 (Ang 1-7) using an in vivo rat model of I/R injury and examined the underlying mechanisms. Rats were treated with Ang 1-7 (1 mg/kg, IP) 30 min before the surgical procedures. Twenty-four rats were equally divided into four groups: sham control, sham-treated with Ang 1-7, I/R injury group, and I/R injury group treated with Ang 1-7. In vivo I/R injury was induced by clamping the left coronary artery for 30 min, followed by 1 hour of reperfusion. The I/R group showed abnormal electrophysiological changes and arrhythmic episodes during electrocardiography (ECG) recording, increased oxidative stress, downregulation of peroxisome proliferator-activated receptor gamma (PPAR-γ), and upregulation of C-X-C motif chemokine ligand 16 (CXCL16) expression in cardiac tissue, which increased cardiac NF-kB expression and IL-17 levels. Moreover, I/R injury caused significant histological disruption and increased cyclooxygenase 2 (COX-2) and heat shock protein 90 (HSP90) immunoreactions, correlating with the extent of cardiac damage. However, preoperative Ang 1-7 administration significantly improved the electrophysiological, biochemical, and histopathological changes induced by I/R injury. This study demonstrated that Ang 1-7 exerted protective anti-arrhythmic, anti-inflammatory, and pro-healing effects by upregulating PPAR-γ and downregulating CXCL16, IL-17, and NF-kB pathways, suggesting it is a promising cardioprotective agent for preventing arrhythmias induced by I/R injury.
Collapse
Affiliation(s)
- Amy F Boushra
- Department of Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | | | - Walaa Ibrahim
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Ali Abd El-Meguid
- Department of Anatomy and Embryology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Yara S Abouelela
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Noha A E Yasin
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Enas Gomaa
- Department of Microbiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Esraa Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nermeen Bastawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Bansal N, Kathuria D, Babu AM, Dhiman S, Lakhanpal S, Prasad KN, Kumar R, Tyagi Y, Kumar B, Singh MP, Gaidhane AM. A perspective on small molecules targeting the renin-angiotensin-aldosterone system and their utility in cardiovascular diseases: exploring the structural insights for rational drug discovery and development. RSC Med Chem 2025:d4md00720d. [PMID: 39925732 PMCID: PMC11803303 DOI: 10.1039/d4md00720d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/12/2025] [Indexed: 02/11/2025] Open
Abstract
Renin-angiotensin-aldosterone system (RAAS) is crucial in cardiovascular homeostasis. Any disruption in this homeostasis often leads to numerous cardiovascular diseases (CVDs) and non-cardiovascular diseases. Small molecules that show ability toward mechanically modulating RAAS components have been developed to address this problem, thus providing opportunities for innovative drug discovery and development. This review is put forth to provide a comprehensive understanding not only on the signaling mechanisms of RAAS that lead to cardiovascular events but also on the use of small molecules targeting the modulation of RAAS components. Further, the detailed descriptions of the drugs affecting the RAAS and their pharmacodynamics, kinetics, and metabolism profiles are provided. This article also covers the limitations of the present therapeutic armory, followed by their mechanistic insights. A brief discussion is offered on the analysis of the chemical space parameters of the drugs affecting RAAS compared to other cardiovascular and renal categories of medications approved by the US FDA. This review provides structural insights and emphasizes the importance of integrating the current therapeutic regimen with pharmacological tactics to accelerate the development of new therapeutics targeting the RAAS components for improved and efficacious cardiovascular outcomes. Finally, chemical spacing parameters of RAAS modulators are provided, which will help in understanding their peculiarities in modulating the RAAS signaling through structural and functional analyses. Furthermore, this review will assist medicinal chemists working in this field in developing better drug regimens with improved selectivity and efficacy.
Collapse
Affiliation(s)
- Nisha Bansal
- Gramothan Vidyapeeth Home Science Girls PG College Sangaria Rajasthan India
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Arockia M Babu
- Institute of Pharmaceutical Research, GLA University 17, Km Stone, National Highway #2, Delhi-Mathura Road Mathura India
| | - Sonia Dhiman
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University Phagwara 144411 Punjab India
| | - K Nagendra Prasad
- KKR and KSR Institute of Technology and Sciences Guntur 522017 Andhra Pradesh India
| | - Roshan Kumar
- Graphic Era (Deemed to be University) Clement Town Dehradun-248002 India
| | - Yogita Tyagi
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University Prem Nagar Dehradun 248007 Uttarakhand India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus Srinagar, Garhwal-246174 Uttarakhand India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education Wardha India
| |
Collapse
|
5
|
Liao W, Lin J, Wang W, Zhang M, Chen Y, Li X, Liu H, Wang PX, Zhao G, Fu J, Wu X. Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction. Front Pharmacol 2025; 15:1503757. [PMID: 39867660 PMCID: PMC11757866 DOI: 10.3389/fphar.2024.1503757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO2) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids. The CeO2/Nrf2 nanocomposites effectively activated the Nrf2/antioxidant response element (ARE) signaling pathway both in vivo and in vitro. In a mouse MI model induced by permanent ligation of the left anterior descending artery (LAD), CeO2/Nrf2 nanocomposites were administered via tail vein injection, predominantly targeting circulating monocytes and macrophages which will be recruited to the heart post MI due to the acute inflammatory response. We demonstrated that CeO2/Nrf2 nanocomposites alleviated cardiac systolic dysfunction and significantly reduced infarct size and scar fibrosis post-MI. Furthermore, CeO2/Nrf2 nanocomposites effectively mitigated MI-induced oxidative stress and downregulated Nrf2-regulated inflammatory genes (tumor necrosis factor-α, IL-6, and inducible nitric oxide synthase), thereby reducing cardiomyocyte apoptosis. These findings indicate that CeO2/Nrf2 nanocomposites significantly enhance Nrf2 signaling activation and confer protection against MI. This study identifies CeO2/Nrf2 nanocomposites as a promising strategy for post-MI therapy.
Collapse
Affiliation(s)
- Wenjing Liao
- The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China
| | - Wenli Wang
- The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China
| | - Ming Zhang
- The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China
| | - Yanfang Chen
- Department of Pharmacy, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin Li
- The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China
| | - Huan Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Pan Xia Wang
- The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China
| | - Jijun Fu
- The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China
| | - Xiaoqian Wu
- The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China
| |
Collapse
|
6
|
Lee YC, Jou YC, Chou WC, Tsai KL, Shen CH, Lee SD. Ellagic acid protects against angiotensin II-induced hypertrophic responses through ROS-mediated MAPK pathway in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3253-3263. [PMID: 38356441 DOI: 10.1002/tox.24170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The early myocardial response of hypertension is an elevation of angiotensin-II (Ang-II) concentration, leading to heart failure and cardiac hypertrophy. This hypertrophic event of the heart is mediated by the interaction of Ang type 1 receptors (AT-R1), thereby modulating NADPH oxidase activity in cardiomyocytes, which alters redox status in cardiomyocytes. Ellagic acid (EA) has anti-inflammatory and anti-oxidative capacities. Thus, EA has potential preventive effects on cardiovascular diseases and diabetes. In the last decades, because the protective effect of EA on Ang-II-induced hypertrophic responses is unclear, this study aims to investigate the protective effect of EA in cardiomyocytes. H9c2 cells were treated to Ang-II 1 μM for 24 h to induce cellular damage. We found that EA protected against Ang-II-increased cell surface area and pro-hypertrophic gene expression in H9c2. EA reduced Ang-II-caused AT-R1 upregulation, thereby inhibiting oxidative stress NADPH oxidase activation. EA mitigated Ang-II-enhanced p38 and extracellular-signal-regulated kinase (ERK) phosphorylation. Moreover, EA treatment under Ang-II stimulation also reversed NF-κB activity and iNOS expression. This study shows that EA protects against Ang-II-induced myocardial hypertrophy and attenuates oxidative stress through reactive oxygen species-mediated mitogen-activated protein kinase signaling pathways in H9c2 cells. Thus, EA may be an effective compound for preventing Ang-II-induced myocardial hypertrophy.
Collapse
Affiliation(s)
- Ya-Che Lee
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, St. Martin De Porres Hospital, Chia-Yi City, Taiwan
- Department of Health and Nutrition Biotechnology, College of Medical and Health Science, Asia University, Taichung City, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
- Institute of Allied Health Science, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia-Yi City, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Min Hsiung, Chia-Yi, Taiwan
| | - Shin-Da Lee
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung City, Taiwan
- Department of Physical Therapy, PhD program in Healthcare Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Saha S, Saso L, Trofimov AV, Yablonskaya OI. Chemical, Biological and Biomedical Aspects of Bioantioxidants. Biomedicines 2023; 11:biomedicines11051377. [PMID: 37239048 DOI: 10.3390/biomedicines11051377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Bioantioxidants are biologically important antioxidants, a heterogeneous variety of molecules, which are difficult to classify using commonly shared structural features [...].
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Aleksei V Trofimov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskii per. 9, 141701 Moscow, Russia
| | - Olga I Yablonskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, 119334 Moscow, Russia
| |
Collapse
|