1
|
Zhao Y, Zhuang Y, Shi J, Fan H, Lv Q, Guo X. Cathepsin B induces kidney diseases through different types of programmed cell death. Front Immunol 2025; 16:1535313. [PMID: 40129990 PMCID: PMC11930809 DOI: 10.3389/fimmu.2025.1535313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Cathepsin B (CTSB), a key cysteine protease, plays essential roles in physiological and pathological processes. As research progresses, interest in how CTSB triggers different types of programmed cell death (PCD) to induce the onset and development of diseases is increasing. Several recent studies suggest that different types of PCD mediated by CTSB play key roles in kidney diseases. In this review, we outline the fundamental mechanisms by which CTSB triggers different types of PCD in several kidney diseases and discuss the function of CTSB in various segments of the kidney. Moreover, we explore the possibilities and prospects of using CTSB as a therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yunlong Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yong Zhuang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
2
|
Ramsay H, Yu L, Alousi FF, Alli AA. Small Extracellular Vesicles with a High Sphingomyelin Content Isolated from Hypertensive Diabetic db/db Mice Inhibits Calcium Mobilization and Augments Amiloride-Sensitive Epithelial Sodium Channel Activity. BIOLOGY 2025; 14:252. [PMID: 40136509 PMCID: PMC11939694 DOI: 10.3390/biology14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025]
Abstract
Extracellular vesicles (EVs) contain bioactive lipids that play a key role in pathophysiology. We hypothesized that EVs released from salt-loaded hypertensive diabetic db/db mice have increased bioactive lipid content that inhibits intracellular calcium mobilization and increases the activity of renal epithelial sodium channels (ENaC). An enrichment of sphingomyelins (SMs) was found in small urinary EVs (uEVs) isolated from salt-loaded hypertensive diabetic db/db mice (n = 4) compared to non-salt loaded db/db mice with diabetes alone (n = 4). Both groups of mice were included in the same cohort to control for variability. Cultured mouse cortical collecting duct (mpkCCD) cells loaded with a calcium reporter dye and challenged with small uEVs from hypertensive diabetic db/db mice showed a decrease in calcium mobilization when compared to cells treated with small uEVs from diabetic db/db mice. The amiloride-sensitive transepithelial current was increased in mpkCCD cells treated with small uEVs with abundant sphingomyelin content from hypertensive diabetic db/db mice in a dose- and time-dependent manner. Similar results were observed in mpkCCD cells and Xenopus 2F3 cells treated with exogenous sphingomyelin in a time-dependent manner. Single-channel patch clamp studies showed a decrease in ENaC activity in cells transiently transfected with sphingomyelin synthase 1/2 specific siRNA compared to non-targeting siRNA. These data suggest EVs with high sphingomyelin content positively regulate renal ENaC activity in a mechanism involving an inhibition of calcium mobilization.
Collapse
Affiliation(s)
- Hunter Ramsay
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA (L.Y.); (F.F.A.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ling Yu
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA (L.Y.); (F.F.A.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Faisal F. Alousi
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA (L.Y.); (F.F.A.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdel A. Alli
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA (L.Y.); (F.F.A.)
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Kokesh KJ, Bala N, Dogan YE, Nguyen VAL, Costa M, Alli A. Mycobacterium avium inhibits protein kinase C and MARCKS phosphorylation in human cystic fibrosis and non-cystic fibrosis cells. PLoS One 2024; 19:e0308299. [PMID: 39413095 PMCID: PMC11482691 DOI: 10.1371/journal.pone.0308299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/03/2024] [Indexed: 10/18/2024] Open
Abstract
In cystic fibrosis (CF), there is abnormal translocation and function of the cystic fibrosis transmembrane conductance regulator (CFTR) and an upregulation of the epithelial sodium channel (ENaC). This leads to hyperabsorption of sodium and fluid from the airway, dehydrated mucus, and an increased risk of respiratory infections. In this study, we performed a proteomic assessment of differentially regulated proteins from CF and non-CF small airway epithelial cells (SAEC) that are sensitive to Mycobacterium avium. CF SAEC and normal non-CF SAEC were infected with M. avium before the cells were harvested for protein. Protein kinase C (PKC) activity was greater in the CF cells compared to the non-CF cells, but the activity was significantly attenuated in both cell types after infection with M. avium compared to vehicle. Western blot and densitometric analysis showed a significant increase in cathepsin B protein expression in M. avium infected CF cells. Myristoylated alanine rich C-kinase substrate (MARCKS) protein was one of several differentially expressed proteins between the groups that was identified by mass spectrometry-based proteomics. Total MARCKS protein expression was greater in CF cells compared to non-CF cells. Phosphorylation of MARCKS at serine 163 was also greater in CF cells compared to non-CF cells after treating both groups of cells with M. avium. Taken together, MARCKS protein is upregulated in CF cells and there is decreased phosphorylation of the protein due to a decrease in PKC activity and presumably increased cathepsin B mediated proteolysis of the protein after M. avium infection.
Collapse
Affiliation(s)
- Kevin J. Kokesh
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Yunus E. Dogan
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Pediatrics, Erciyes University of Medicine, Kayseri, Turkey
| | - Van-Anh L. Nguyen
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Marcus Costa
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Abdel Alli
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Medicine, Division of Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
4
|
Li Q, Cao H, Xu X, Chen Y, Zhang Y, Mi Y, Zhu X, Shi Y, Liu J, Wang B, Xu CB, Wang C. Resveratrol attenuates cyclosporin A-induced upregulation of the thromboxane A 2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in the rat mesenteric artery. Eur J Pharmacol 2024; 972:176543. [PMID: 38582274 DOI: 10.1016/j.ejphar.2024.176543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Cyclosporin A, an immunosuppressive agent, is extensively utilized for the prevention of transplant rejection and treat autoimmune disease in the clinic, despite its association with a high risk of hypertension development among patients. Resveratrol is a kind of non-flavonoid phenolic compound that widely exists in many plants. The aim of the present study was to investigate the mechanism by which resveratrol ameliorates cyclosporin A-induced hypertension. The arterial rings of the mesentery were incubated with cyclosporin A and resveratrol in vitro. Rats were administered cyclosporin A and/or resveratrol for 3 weeks in vivo. Blood pressure was measured via the tail arteries. Vasoconstriction curves were recorded using a sensitive myograph. The protein expression was evaluated through Western blotting. This study demonstrated that resveratrol mitigated the cyclosporin A-induced increase in blood pressure in rats. Furthermore, resveratrol markedly inhibited the cyclosporin A-induced upregulation of thromboxane A2 receptor-mediated vasoconstriction in the rat mesenteric artery both in vitro and in vivo. Moreover, resveratrol activated AMPK/SIRT1 and inhibited the MAPK/NF-κB signaling pathway. In conclusion, resveratrol restored the cyclosporin A-induced upregulation of the thromboxane A2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in rats.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hanjing Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinya Xu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yumeng Chen
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yufang Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanni Mi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Xingmei Zhu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China; Engineering Research Center of Brain Health Industry of Chinese Medicine, Universities of Shaanxi Province, Xianyang 712046, China.
| |
Collapse
|
5
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
6
|
Dogan YE, Bala N, Chacko KM, Tuna KM, Alli AA. Tempol treatment normalizes membrane expression of epithelial transport proteins in the kidney of salt-loaded hypertensive diabetic db/db mice. Am J Transl Res 2023; 15:6690-6700. [PMID: 38186979 PMCID: PMC10767517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/14/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Hypertension exacerbates the progression and severity of diabetic kidney disease. In this study, we addressed the hypothesis that tempol acts at multiple segments of the nephron to normalize the abundance of sodium coupled epithelial transport proteins in the luminal plasma membrane to mitigate high blood pressure in salt-loaded hypertensive diabetic db/db mice. METHODS Soluble and membrane fractions from freshly homogenized kidney cortex tissue samples were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and probed for specific proteins by Western blotting. Western blotting for specific urinary extracellular vesicle (uEV) markers and nanoparticle tracking analysis was performed to characterize each uEV preparation from each group. A one-way ANOVA was performed to determine statistical significance between three groups (hypertensive diabetic db/db mice treated with vehicle, hypertensive diabetic db/db mice treated with tempol, and wild-type mice). RESULTS Tempol treatment reduced systolic blood pressure in hypertensive diabetic db/db mice compared to db/db mice that received vehicle. We observed attenuated membrane protein expression of the sodium hydrogen exchanger 3 (NHE3), sodium potassium chloride co-transporter (NKCC2), sodium chloride cotransporter (NCC), and epithelial sodium channel (ENaC) in the kidney of salt-loaded hypertensive diabetic db/db mice infused with tempol by osmotic minipump for 5 days compared to hypertensive diabetic db/db mice infused with vehicle. Also, the infusion of tempol in hypertensive diabetic db/db mice reduced the augmented protein expression of protein kinase c (PKC) epsilon observed in the vehicle treated hypertensive diabetic db/db kidney when compared to the healthy wild-type kidney. The amount of uEV and their size profiles were comparable between the three groups. CONCLUSIONS This study demonstrates that tempol down-regulates epithelial transport mechanisms in each segment of the nephron and normalizes salt-induced high blood pressure in diabetic animals presumably in a PKC dependent manner.
Collapse
Affiliation(s)
- Yunus E Dogan
- Department of Physiology and Aging, College of Medicine, University of FloridaGainesville Florida 32610, USA
- Department of Pediatrics, Faculty of Medicine, Erciyes UniversityKayseri, Turkey
| | - Niharika Bala
- Department of Physiology and Aging, College of Medicine, University of FloridaGainesville Florida 32610, USA
| | - Kevin M Chacko
- Department of Physiology and Aging, College of Medicine, University of FloridaGainesville Florida 32610, USA
| | - Kubra M Tuna
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, College of Medicine, University of FloridaGainesville Florida 32610, USA
| | - Abdel A Alli
- Department of Physiology and Aging, College of Medicine, University of FloridaGainesville Florida 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, College of Medicine, University of FloridaGainesville Florida 32610, USA
| |
Collapse
|
7
|
Alli AA. Extracellular Vesicles: Investigating the Pathophysiology of Diabetes-Associated Hypertension and Diabetic Nephropathy. BIOLOGY 2023; 12:1138. [PMID: 37627022 PMCID: PMC10452642 DOI: 10.3390/biology12081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Extracellular vesicles (EVs) include exosomes, microvesicles, and apoptotic bodies. EVs are released by all cell types and are found in biological fluids including plasma and urine. Urinary extracellular vesicles (uEVs) are a mixed population of EVs that comprise small EVs that are filtered and excreted, EVs secreted by tubular epithelial cells, and EVs released from the bladder, urethra, and prostate. The packaged cargo within uEVs includes bioactive molecules such as metabolites, lipids, proteins, mRNAs, and miRNAs. These molecules are involved in intercellular communication, elicit changes in intracellular signaling pathways, and play a role in the pathogenesis of various diseases including diabetes-associated hypertension and diabetic nephropathy. uEVs represent a rich source of biomarkers, prognosis markers, and can be loaded with small-molecule drugs as a vehicle for delivery.
Collapse
Affiliation(s)
- Abdel A. Alli
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; ; Tel.: +1-352-273-7877
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|