1
|
Mansoori R, Ashrafpour M, Asghari MH, Golchoobian R, Hosseini SM, Reiter RJ, Karim B, Moghadamnia AA, Kazemi S. Protective effects of melatonin against 5-fluorouracil-induced cardiotoxicity in rats: A comprehensive evaluation of oxidative, inflammatory, and apoptotic pathways. Toxicol Appl Pharmacol 2025; 499:117343. [PMID: 40239743 DOI: 10.1016/j.taap.2025.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Cardiotoxicity is a serious adverse effect of 5-fluorouracil (5-FU) a common chemotherapeutic agent. This study aimed to evaluate the protective effects of melatonin (MLT) against 5-fluorouracil (5-FU)-induced cardiotoxicity in rats, focusing on oxidative stress, inflammatory pathways, gene expression, electrocardiographic and histopathological changes. MATERIALS AND METHODS Twenty-five male Wistar rats were divided into five groups. The animals received either MLT at doses of 2.5, 5, or 10 mg/kg/day, 5-FU at 50 mg/kg (i.p.), or a combination of both treatments. Cardiotoxicity was assessed through electrocardiography, cardiac enzymes, oxidative stress markers, and histopathology. RESULTS 5-FU treatment significantly increased oxidative stress markers and inflammatory mediators while causing histopathological damage in heart tissues. Co-administration of MLT with 5-FU significantly mitigated these effects by reducing oxidative damage, as evidenced by lower levels of malondialdehyde (MDA), nitric oxide (NO), and myeloperoxidase (MPO). Additionally, MLT enhanced antioxidant activity, as reflected by increased levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in heart tissues. Gene expression analysis further confirmed that MLT treatment reduced the elevated levels of COX-2 and VEGF, which are critical players in the inflammatory process. Histopathological examination demonstrated that MLT preserved the structural integrity of myocardial tissues, reducing 5-FU-induced damage score in a dose-dependent manner. Furthermore, MLT co-administration significantly attenuated the rise in cardiac biomarkers, including LDH, AST, and CK-MB, associated with 5-FU-induced cardiotoxicity. CONCLUSION These findings highlight that MLT, through its antioxidant and anti-inflammatory properties, exerts a protective effect against 5-FU-induced toxicity, suggesting its therapeutic potential for improving cardiovascular health during chemotherapy.
Collapse
Affiliation(s)
- Razieh Mansoori
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Manoochehr Ashrafpour
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hossien Asghari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ravieh Golchoobian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Srirangan P, Shyam M, Radhakrishnan V, Prince SE. NLRP3 as a therapeutic target in cyclophosphamide-associated toxicities. Mol Biol Rep 2025; 52:364. [PMID: 40192868 DOI: 10.1007/s11033-025-10479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/27/2025] [Indexed: 04/20/2025]
Abstract
Cyclophosphamide (CPM), a potent chemotherapeutic agent, while effective against various cancers, can cause significant organ damage. The NLRP3 inflammasome, a key player in the innate immune response, is implicated in this toxicity. This review delves into the intricate relationship between CPM and NLRP3 inflammasome activation, focusing on oxidative stress-mediated organ damage. We explore the mechanisms by which CPM induces NLRP3 activation in the kidneys, heart, liver, and gastrointestinal tract. Additionally, we examine the signaling pathways involved in this process. The review also discusses potential therapeutic interventions, including phytotherapeutic agents, that target NLRP3 inflammasome activation to mitigate CPM-induced organ injury. By highlighting the crucial role of NLRP3 in CPM-related toxicity, this review provides a foundation for future research aimed at developing novel therapeutic strategies to minimize adverse effects and improve patient outcomes.
Collapse
Affiliation(s)
- Prathap Srirangan
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Mukul Shyam
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Vidya Radhakrishnan
- VIT School of Agricultural Innovations and Advanced Learning, VIT University, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India.
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
3
|
Adhab AH, Altalbawy FMA, Mahdi MS, Baldaniya L, Omar TM, Ganesan S, Juneja B, Pathak PK, Mansoor AS, Radi UK, Abd NS, Kadhim M. NADPH Oxidases in Cancer Therapy-Induced Cardiotoxicity: Mechanisms and Therapeutic Approaches. Cardiovasc Toxicol 2025; 25:631-649. [PMID: 39966326 DOI: 10.1007/s12012-025-09976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Cancer therapy-induced cardiotoxicity remains a significant clinical challenge, limiting the efficacy of cancer treatments and impacting long-term survival and quality of life. NADPH oxidases, a family of enzymes that are able to generate reactive oxygen species (ROS), have emerged as key players in the pathogenesis of cardiotoxicity associated with various cancer therapies. This review comprehensively examines the role of NADPH oxidases in cancer therapy-induced cardiotoxicity, elucidating the underlying mechanisms and exploring potential therapeutic approaches. We discuss the structure and function of NADPH oxidases in the cardiovascular system and their involvement in cardiotoxicity induced by anthracyclines and ionizing radiation. The molecular mechanisms by which NADPH oxidase-derived ROS contribute to cardiac injury are explored, including direct oxidative damage, activation of pro-apoptotic pathways, mitochondrial dysfunction, vascular damage, inflammation, fibrosis, and others. Furthermore, we evaluate therapeutic strategies targeting NADPH oxidases, such as specific inhibitors, antioxidant therapies, natural products, and other cardioprotectors. The review also addresses current challenges in the field, including the need for isoform-specific targeting and the identification of reliable biomarkers. Finally, we highlight future research directions aimed at mitigating NADPH oxidase-mediated cardiotoxicity and alleviating cardiovascular side effects in cancer survivors. By synthesizing current knowledge and identifying knowledge gaps, this review provides a rationale for future studies and the development of novel cardioprotective strategies in cancer therapy.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | | | - Lalji Baldaniya
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Nineveh, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bhanu Juneja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Nasr Saadoun Abd
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Munther Kadhim
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Srirangan P, Sabina EP. Protective effects of herbal compounds against cyclophosphamide-induced organ toxicity: a pathway-centered approach. Drug Chem Toxicol 2025:1-43. [PMID: 39847469 DOI: 10.1080/01480545.2025.2455442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines. The discussion delves into the molecular mechanisms underlying these toxicities, highlighting dysregulation in key signaling pathways, including Nrf2, NF-κB, MAPK/ERK, and AKT. In addressing these challenges, recent studies have identified various herbal drugs and phytochemicals capable of mitigating CPM-induced toxicity. Notable compounds such as cinnamaldehyde, baicalin, quercetin, and curcumin have demonstrated protective effects. Integrating these herbal formulations with CPM therapy is proposed to enhance patient safety and treatment efficacy. This review underscores the influence of CPM on apoptosis and inflammation pathways, which lead to alterations in organ-specific biomarkers. Phytochemicals may exert protective effects by restoring disrupted signaling pathways and normalizing altered biomarkers. The compilation of phytochemicals presented in this review serves as a valuable resource for researchers exploring other herbal products with potential protective effects against CPM toxicity. A significant gap in the current literature is the lack of clinical trials evaluating phytochemicals that mitigate CPM toxicity in vivo. Rigorous clinical studies are necessary to establish the efficacy and safety of herbal formulations in cancer treatment. Such research will clarify the role of natural remedies in complementing conventional therapies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Prathap Srirangan
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
5
|
Popa A, Usatiuc LO, Scurtu IC, Murariu R, Cofaru A, Pop R, Tabaran FA, Gherman LM, Valean D, Bolundut AC, Orzan RI, Muresan XM, Morohoschi AG, Andrei S, Lazea C, Agoston-Coldea L. Assessing the Anti-Inflammatory and Antioxidant Activity of Mangiferin in Murine Model for Myocarditis: Perspectives and Challenges. Int J Mol Sci 2024; 25:9970. [PMID: 39337458 PMCID: PMC11432486 DOI: 10.3390/ijms25189970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Myocarditis is a major cause of heart failure and death, particularly in young individuals. Current treatments are mainly symptomatic, but emerging therapies focus on targeting inflammation and fibrosis pathways. Natural bioactive compounds like flavonoids and phenolic acids show promising anti-inflammatory and antioxidant properties. Corticosteroids are frequently employed in the treatment of autoimmune myocarditis and appear to lower mortality rates compared to conventional therapies for heart failure. This study aims to explore the effects of Mangiferin on pro-inflammatory cytokine levels, nitro-oxidative stress markers, histopathological alterations, and cardiac function in experimental myosin-induced autoimmune myocarditis. The effects were compared to Prednisone, used as a reference anti-inflammatory compound, and Trolox, used as a reference antioxidant. The study involved 30 male Wistar-Bratislava rats, which were randomly divided into five groups: a negative control group (C-), a positive control group with induced myocarditis using a porcine myosin solution (C+), three groups with induced myocarditis receiving Mangiferin (M), Prednisone (P), or Trolox (T) as treatment. Cardiac function was evaluated using echocardiography. Biochemical measurements of nitro-oxidative stress and inflammatory markers were conducted. Finally, histopathological changes were assessed. At echocardiography, the evaluation of the untreated myocarditis group showed a trend toward decreased left ventricular ejection fraction (LVEF) but was not statistically significant, while all treated groups showed some improvement in LVEF and left ventricular fraction shortening (LVFS). Significant changes were seen in the Mangiferin group, with lower end-diastolic left ventricular posterior wall (LVPWd) by day 21 compared to the Trolox group (p < 0.001). In the first week of the experiment, levels of interleukins (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α were significantly higher in the myosin group compared to the negative control group (p < 0.001, p < 0.001, p < 0.01), indicating the progression of inflammation in this group. Treatment with Mangiferin, Prednisone, and Trolox caused a significant reduction in IL-1β compared to the positive control group (p < 0.001). Notably, Mangiferin resulted in a superior reduction in IL-1β compared to Prednisone (p < 0.05) and Trolox (p < 0.05). Furthermore, Mangiferin treatment led to a statistically significant increase in total oxidative capacity (TAC) (p < 0.001) and a significant reduction in nitric oxide (NOx) levels (p < 0.001) compared to the negative control group. Furthermore, when compared to the Prednisone-treated group, Mangiferin significantly reduced NOx levels (p < 0.001) and increased TAC levels (p < 0.001). Mangiferin treatment significantly lowered creatine kinase (CK) and aspartate aminotransferase (AST) levels on day 7 (p < 0.001 and p < 0.01, respectively) and reduced CK levels on day 21 (p < 0.01) compared to the untreated group. In the nontreated group, the histological findings at the end of the experiment were consistent with myocarditis. In the group treated with Mangiferin, only one case exhibited mild inflammatory infiltrates, represented by mononucleated leukocytes admixed with few neutrophils, with the severity graded as mild. Statistically significant correlations between the grades (0 vs. 1-2) and the study groups have been highlighted (p < 0.005). This study demonstrated Mangiferin's cardioprotective effects in autoimmune myocarditis, showing reduced oxidative stress and inflammation. Mangiferin appears promising as a treatment for acute myocarditis, but further research is needed to compare its efficacy with other treatments like Trolox and Prednisone.
Collapse
Affiliation(s)
- Alexandra Popa
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Lia-Oxana Usatiuc
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Pathophysiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Iuliu Calin Scurtu
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Raluca Murariu
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexandra Cofaru
- Department of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Romelia Pop
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Flaviu Alexandru Tabaran
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Luciana Madalina Gherman
- Experimental Center, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dan Valean
- Regional Institute of Gastroenterology and Hepatology “O. Fodor”, 400162 Cluj-Napoca, Romania
| | | | - Rares Ilie Orzan
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ximena Maria Muresan
- Department of Translational Medicine, Institute of Medical Research and Life Sciences—MEDFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Andreea Georgiana Morohoschi
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Sanda Andrei
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cecilia Lazea
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Lucia Agoston-Coldea
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Huyut Z, Yildizhan K, Altındağ F. The effects of berberine and curcumin on cardiac, lipid profile and fibrosis markers in cyclophosphamide-induced cardiac damage: The role of the TRPM2 channel. J Biochem Mol Toxicol 2024; 38:e23783. [PMID: 39056209 DOI: 10.1002/jbt.23783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Cyclophosphamide (CYP) is widely used to treat various types of cancer. In addition to the therapeutic properties of this drug, unfortunately, its side effects are still not fully understood. This study investigated the protective effect of curcumin (CURC) and berberine (BER) on CYP-induced cardiac damage. Thirty-six male rats were equally divided into the control, dimethyl sulfoxide (DMSO), CYP, CYP + CURC, CYP + BER and CYP + BER + CURC groups. Troponin-I, Creatine kinase-myocardial band (CK-MB), total cholesterol, triglyceride levels in serum samples, and reactive oxygen species (ROS), poly(ADP-ribose) polymerase-1 (PARP-1), and transient receptor potential melastatin 2 (TRPM2) channel levels in heart tissue were measured using an enzyme-linked immunoassay (ELISA) kit. In addition, histopathological examination and immunohistochemical investigation of the TRPM2 channel, fibroblast specific protein-1 (FSP1), transforming growth factor-beta- 1 (TGF-β1) and α-smooth muscle actin (α-SMA) expressions were determined in heart tissue. The CYP group's troponin-I, total cholesterol, triglyceride, CK-MB, ROS, PARP-1 and TRPM2 channel levels were higher than in the other groups in the ELISA measurements (p < 0.05). In contrast, these parameters in the group treated with CURC and BER together with CYP were lower than in the CYP group (p < 0.05). Additionally, CUR and BER reduced CYP-induced pathological damage, TRPM2, FSP1, TGF-β1 and α-SMA expressions. The data showed that CYP administration can cause cardiac damage by increasing the TRPM2 channel, TGF-β1, FSP1 and α-SMA expression levels. Therefore, we concluded that CURC and BER administration following CYP application may be used as therapeutic agents to prevent CYP-induced cardiac damage.
Collapse
Affiliation(s)
- Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kenan Yildizhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altındağ
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
7
|
Zhang H, Li N, Zhang Y, Xu Y, Lu F, Lin D, Lin S, Li M, Yang B. Ganoderma lucidum Polysaccharide Peptide Alleviates Cyclophosphamide-Induced Male Reproductive Injury by Reducing Oxidative Stress and Apoptosis. Biomedicines 2024; 12:1632. [PMID: 39200097 PMCID: PMC11351902 DOI: 10.3390/biomedicines12081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Chemotherapy is an important factor leading to male infertility. It is crucial to discover safe and effective treatments to prevent male reproductive injury caused by chemotherapy. The Ganoderma lucidum polysaccharide peptide (GLPP) has multiple pharmacological activities. The purpose of this study was to determine whether GLPP could protect the male sperm production from chemotherapeutic injury using a mouse model, with testicular damage induced by cyclophosphamide (CP). CP (50 mg/kg/day) was injected intraperitoneally into male ICR mice gavaged with different doses of GLPP at certain spermatogenic stages. The experimental results showed that GLPP alleviated the CP-induced reduction in reproductive organ coefficients and sperm parameters and reduced the morphological damage of testicular tissues in a dose-dependent manner. GLPP significantly improved the reproductive index, sperm-related parameters, sex hormone levels, and histological testis architecture at different spermatogenic stages. Furthermore, GLPP significantly increased superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), Nrf2, and HO-1, and decreased malondialdehyde (MDA) and Keap-1 in the testicular tissue, indicating reduced oxidative stress. In addition, GLPP limited CP-induced apoptosis via a reduction in Bax expression and increase in Bcl-2 expression. This study suggests that GLPP plays a protective role in spermatogenesis by reducing chemotherapeutic injury and might be developed into drug for male patients receiving chemotherapy.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Nannan Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Feng Lu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Dongmei Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqian Lin
- China National Engineering Research Center on JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Li
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (H.Z.)
| |
Collapse
|
8
|
Almukainzi M, El-Masry TA, Ibrahim HA, Saad HM, El Zahaby EI, Saleh A, El-Nagar MMF. New insights into the potential cardioprotective effects of telmisartan and nanoformulated extract of Spirulina platensis via regulation of oxidative stress, apoptosis, and autophagy in an experimental model. Front Pharmacol 2024; 15:1380057. [PMID: 38783939 PMCID: PMC11112102 DOI: 10.3389/fphar.2024.1380057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background Cardiotoxicity is one of the limiting side effects of the commonly used anticancer agent cyclophosphamide (Cyclo). Materials and methods The possible protective effects of telmisartan and nanoformulated Spirulina platensis (Sp) methanolic extract against Cyclo-induced cardiotoxicity were examined in this study. Experimental groups of rats were randomly divided into nine groups as control vehicle, control polymer, telmisartan (TEL, 10 mg/kg), free Sp extract (300 mg/kg), nano Sp extract (100 mg/kg), Cyclo (200 mg/kg), TEL + Cyclo, free Sp + Cyclo, and nano Sp + Cyclo. The groups with Cyclo combinations were treated in the same manner as their corresponding ones without Cyclo, with a single dose of Cyclo on day 18. Results The results indicate that Cyclo causes significant cardiotoxicity, manifesting in the form of notable increases of 155.49%, 105.74%, 451.76%, and 826.07% in the serum levels of glutamic oxaloacetic transaminase (SGOT), lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), and cardiac troponin I (cTnI) enzyme activities, respectively, as compared to the control. In addition, the cardiac glutathione (GSH) content and activity of glutathione peroxidase-1 (GPX-1) enzyme decreased by 65.94% and 73.85%, respectively. Treatment with nano Sp extract showed the most prominent restorations of the altered biochemical, histopathological, and immunohistochemical features as compared with those by TEL and free Sp; moreover, reductions of 30.64% and 43.02% in the p-AKT content as well as 60.43% and 75.30% of the endothelial nitric oxide synthase (eNOS) immunoreactivity were detected in the TEL and free Sp treatment groups, respectively. Interestingly, nano Sp boosted the autophagy signal via activation of beclin-1 (36.42% and 153.4%), activation of LC3II (69.13% and 195%), downregulation of p62 expressions (39.68% and 62.45%), and increased gene expressions of paraoxonase-1 (PON-1) (90.3% and 225.9%) compared to the TEL and free Sp treatment groups, respectively. Conclusion The findings suggest the protective efficiency of telmisartan and nano Sp extract against cardiotoxicity via activations of the antioxidant, antiapoptotic, and autophagy signaling pathways.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Xu B, Liang J, Fu L, Wei J, Lin J. A Novel Oncogenic Role of Disulfidptosis-related Gene SLC7A11 in Anti-tumor Immunotherapy Response to Human Cancers. Curr Cancer Drug Targets 2024; 24:846-866. [PMID: 38303526 DOI: 10.2174/0115680096277818231229105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The protein Solute Carrier Family 7 Member 11 (SLC7A11) plays a pivotal role in cellular redox homeostasis by suppressing disulfidptosis, which restricts tumor growth. Yet, its relevance in prognosis, immunity, and cancer treatment efficacy is not well understood. METHODS We conducted a comprehensive analysis of the expression of SLC7A11 across 33 cancer types, employing datasets from public databases. Methods, such as Cox regression and survival analyses assessed its prognostic significance, while functional enrichment explored the biological processes tied to SLC7A11. The association between SLC7A11 expression, immune cell infiltration, and immune-related gene expression was also scrutinized. RESULTS Notably, SLC7A11 expression was more pronounced in cancerous compared to normal samples and correlated with higher tumor grades. Increased SLC7A11 expression was linked to poor outcomes, particularly in liver hepatocellular carcinoma (LIHC). This protein's expression also showcased significant relationships with diverse molecular and immune subtypes. Additionally, a prognostic nomogram was devised, integrating SLC7A11 expression and clinical variables. High SLC7A11 levels corresponded with cell growth and senescence pathways in various cancers and with lipid and cholesterol metabolism in LIHC. Furthermore, potential therapeutic compounds for LIHC with high SLC7A11 were identified. Real-time PCR (qPCR) and Western blot were conducted to explore the expression of SLC7A11 in tumor tissues and cancer cell lines. CONCLUSION In summation, this study emphasizes the prognostic and immunological importance of SLC7A11, spotlighting its potential as a therapeutic target in LIHC.
Collapse
Affiliation(s)
- Borui Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jiahua Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Liangmin Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Jinhuan Wei
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Juan Lin
- Department of Pediatrics, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| |
Collapse
|
10
|
Adeyemi DH, Hamed MA, Oluwole DT, Omole AI, Akhigbe RE. Acetate attenuates cyclophosphamide-induced cardiac injury via inhibition of NF-kB signaling and suppression of caspase 3-dependent apoptosis in Wistar rats. Biomed Pharmacother 2024; 170:116019. [PMID: 38128178 DOI: 10.1016/j.biopha.2023.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
AIM The goal of the current study was to examine the potential therapeutic effects of sodium acetate on cardiac toxicities caused by cyclophosphamide in Wistar rats. The possible involvement of NF-kB/caspase 3 signaling was also explored. MAIN METHODS Thirty-two male Wistar rats were divided into four groups at random. (n = 8). The control animals received 0.5 mL of distilled water orally for 14 days, the acetate-treated group received 200 mg/kg/day of sodium acetate orally for 14 consecutive days, and cyclophosphamide-treated rats received 150 mg/kg /day of cyclophosphamide i.p. on day 8, while cyclophosphamide + acetate group received sodium acetate and cyclophosphamide as earlier stated. KEY FINDINGS Results showed that cyclophosphamide-induced cardiotoxicity, which manifested as a marked drop in body and cardiac weights as well as cardiac weight/tibial length, increased levels of troponin, C-reactive protein, lactate, and creatinine kinase, and lactate dehydrogenase activities in the plasma and cardiac tissue. Histopathological examination also revealed toxic cardiac histopathological changes. These alterations were associated with a significant increase in xanthine oxidase and myeloperoxidase activities, uric acid, malondialdehyde, TNF-α, IL-1β, NFkB, DNA fragmentation, and caspase 3 and caspase 9 activities in addition to a marked decline in Nrf2 and GSH levels, and SOD and catalase activities in the cardiac tissue. Acetate co-administration significantly attenuated cyclophosphamide cardiotoxicity by its antioxidant effect, preventing NFkB activation and caspase 9/caspase 3 signalings. SIGNIFICANCE This study shows that acetate co-administration may have cardio-protective effects against cyclophosphamide-induced cardiotoxicity by inhibiting NF-kB signaling and suppressing caspase-3-dependent apoptosis.
Collapse
Affiliation(s)
- D H Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osun State, Nigeria
| | - M A Hamed
- Department of Medical Laboratory Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria; The Brainwill Laboratories, Osogbo, Osun State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - D T Oluwole
- Department of Physiology, Crescent University, Abeokuta, Ogun State, Nigeria
| | - A I Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
11
|
Iqubal A, Najmi AK, Md S, Alkreathy HM, Ali J, Syed MA, Haque SE. Oral delivery of nerolidol alleviates cyclophosphamide-induced renal inflammation, apoptosis, and fibrosis via modulation of NF-κB/cleaved caspase-3/TGF-β signaling molecules. Drug Deliv 2023; 30:2241661. [PMID: 37559381 PMCID: PMC10946274 DOI: 10.1080/10717544.2023.2241661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
Cyclophosphamide (CP) is one of the most extensively used antineoplastic drug, but the nephrotoxicity caused by this drug is a major limiting factor for its use. Nerolidol (NERO) is a natural bioactive compound with diverse pharmacological actions. In Vitro and in vivo study was performed using HK-2 renal cells and Swiss Albino mice. Cell lines and animals were treated with NERO 25 and 50 µM + 30 µM CP (in vitro), 200 and 400 mg/kg, p.o. NERO from day 1 to day 15 + 200 mg/kg, i.p. CP on day 17 as single intraperitoneal injection (in vivo). The makers of oxidative stress, renal-specific injury markers, inflammation, apoptosis, fibrosis, and histopathological changes were studied. The study's outcome showed a significant reduction in the level of malonaldehyde and interleukin-6 (p < 0.01), tumor necrosis factor-α, IL-1β (p < 0.001), and an increase in the superoxide dismutase, catalase, glutathione and interleukin-10 level (p < 0.01), in the in vivo study when treated with NERO 400 and compared with CP 200. In Vitro study showed reduced expression of nuclear factor kappa light chain enhancer of activated B cells, cleaved caspase-3, kidney injury molecule-1 and transforming growth factor-β-1 (p < 0.001), when treated with NERO 50 µM whereas NERO 25 µM only reduced the level of cleaved caspase-3 (p < 0.05) when compared with 30 µM. NERO 400 also reduced uric acid (p < 0.05), urea (p < 0.01), blood urea nitrogen, and serum creatinine levels (p < 0.001) and increased the level of blood-urea-nitrogen/creatinine ratio (p < 0.001). Additionally, the level of fibrosis-specific markers such as transforming growth factor-β1, hyaluronic acid (p < 0.01), 4-hydroxyproline, a collagen-rich area in Masson's' trichome stain, and Smad3 expression was also significantly reduced (p < 0.001). Furthermore, the outcome of multiple renal staining showed structural reversal aberrations, reduction of the thick basement membrane, and glycogen level toward normal when treated with NERO 400. Thus, the study showed a novel mechanistic modality of NERO against cyclophosphamide-induced renal toxicity. The outcome of this study can be considered a step closer to the development of an adjuvant to mitigate cyclophosphamide-induced renal toxicity among patients treated with cyclophosphamide.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|