1
|
Jamous R, Ghorbani F, Mükschel M, Münchau A, Frings C, Beste C. Neurophysiological principles underlying predictive coding during dynamic perception-action integration. Neuroimage 2024; 301:120891. [PMID: 39419422 DOI: 10.1016/j.neuroimage.2024.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
A major concept in cognitive neuroscience is that brains are "prediction machines". Yet, conceptual frameworks on how perception and action become integrated still lack the concept of predictability and it is unclear how neural processes may implement predictive coding during dynamic perception-action integration. We show that distinct neurophysiological mechanisms of nonlinearly directed connectivities in the theta and alpha band between cortical structures underlie these processes. During the integration of perception and motor codes, especially theta band activity in the insular cortex and temporo-hippocampal structures is modulated by the predictability of upcoming information. Here, the insular cortex seems to guide processes. Conversely, the retrieval of such integrated perception-action codes during actions heavily relies on alpha band activity. Here, directed top-down influence of alpha band activity from inferior frontal structures on insular and temporo-hippocampal structures is key. This suggests that these top-down effects reflect attentional shielding of retrieval processes operating in the same neuroanatomical structures previously involved in the integration of perceptual and motor codes. Through neurophysiology, the present study connects predictive coding mechanisms with frameworks specifying the dynamic integration of perception and action.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Moritz Mükschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | | | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| |
Collapse
|
2
|
Hartmann A, Andrén P, Atkinson-Clement C, Czernecki V, Delorme C, Mol Debes N, Morand-Beaulieu S, Müller-Vahl K, Paschou P, Szejko N, Topaloudi A, Black KJ. Tourette syndrome research highlights from 2023. F1000Res 2024; 13:677. [PMID: 39296887 PMCID: PMC11409664 DOI: 10.12688/f1000research.150931.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/21/2024] Open
Abstract
In this, the tenth annual update for the F1000Research Tics collection, we summarize research reports from 2023 on Gilles de la Tourette syndrome and other tic disorders. The authors welcome article suggestions and thoughtful feedback from readers.
Collapse
Affiliation(s)
- Andreas Hartmann
- Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hopitaux de Paris, Paris, Île-de-France, 75013, France
| | - Per Andrén
- Department of Psychology, University of Lund, Lund, Sweden
| | | | - Virginie Czernecki
- Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hopitaux de Paris, Paris, Île-de-France, 75013, France
| | - Cécile Delorme
- Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hopitaux de Paris, Paris, Île-de-France, 75013, France
| | - Nanette Mol Debes
- Herlev University Hospital, Department of Child Neurology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Natalia Szejko
- Department of Neurology, University of Calgary, Calgary, Alberta, Canada
| | | | - Kevin J Black
- Department of Psychiatry, Washington University in St Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Takacs A, Toth-Faber E, Schubert L, Tárnok Z, Ghorbani F, Trelenberg M, Nemeth D, Münchau A, Beste C. Resting network architecture of theta oscillations reflects hyper-learning of sensorimotor information in Gilles de la Tourette syndrome. Brain Commun 2024; 6:fcae092. [PMID: 38562308 PMCID: PMC10984574 DOI: 10.1093/braincomms/fcae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by motor and vocal tics. It is associated with enhanced processing of stimulus-response associations, including a higher propensity to learn probabilistic stimulus-response contingencies (i.e. statistical learning), the nature of which is still elusive. In this study, we investigated the hypothesis that resting-state theta network organization is a key for the understanding of superior statistical learning in these patients. We investigated the graph-theoretical network architecture of theta oscillations in adult patients with Gilles de la Tourette syndrome and healthy controls during a statistical learning task and in resting states both before and after learning. We found that patients with Gilles de la Tourette syndrome showed a higher statistical learning score than healthy controls, as well as a more optimal (small-world-like) theta network before the task. Thus, patients with Gilles de la Tourette syndrome had a superior facility to integrate and evaluate novel information as a trait-like characteristic. Additionally, the theta network architecture in Gilles de la Tourette syndrome adapted more to the statistical information during the task than in HC. We suggest that hyper-learning in patients with Gilles de la Tourette syndrome is likely a consequence of increased sensitivity to perceive and integrate sensorimotor information leveraged through theta oscillation-based resting-state dynamics. The study delineates the neural basis of a higher propensity in patients with Gilles de la Tourette syndrome to pick up statistical contingencies in their environment. Moreover, the study emphasizes pathophysiologically endowed abilities in patients with Gilles de la Tourette syndrome, which are often not taken into account in the perception of this common disorder but could play an important role in destigmatization.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| | - Eszter Toth-Faber
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest 1064, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lina Schubert
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient Clinic, Budapest 1021, Hungary
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| | - Madita Trelenberg
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
| | - Dezso Nemeth
- INSERM, Université Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron 69500, France
- NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1071, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria 35017, Spain
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| |
Collapse
|
4
|
Friedrich J, Rawish T, Bluschke A, Frings C, Beste C, Münchau A. Cognitive and Neural Mechanisms of Behavior Therapy for Tics: A Perception-Action Integration Approach. Biomedicines 2023; 11:1550. [PMID: 37371645 DOI: 10.3390/biomedicines11061550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
European clinical guidelines recommend the use of Exposure and Response Prevention (ERP) and Comprehensive Behavioral Intervention for Tics (CBIT) as first-line treatments for tic disorders. Although ongoing efforts in research are being made to understand the mechanisms underlying these behavioral approaches, as of yet, the neurophysiological mechanisms behind behavioral interventions are poorly understood. However, this is essential to tailor interventions to individual patients in order to increase compliance and efficacy. The Theory of Event Coding (TEC) and its derivative BRAC (Binding and Retrieval in Action Control) provide a theoretical framework to investigate cognitive and neural processes in the context of tic disorders. In this context, tics are conceptualized as a phenomenon of enhanced perception-action binding, with premonitory urges constituting the perceptual and the motor or vocal expression constituting the action part of an event file. Based on this, CBIT is assumed to strongly affect stimulus-response binding in the context of response selection, whereas the effects of ERP presumably unfold during stimulus-response binding in the response inhibition context. Further studies are needed to clarify the neurophysiological processes underlying behavioral interventions to enable the individualization and further development of therapeutic approaches for tic disorders.
Collapse
Affiliation(s)
- Julia Friedrich
- Institute of Systems Motor Science, Center for Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562 Lübeck, Germany
| | - Tina Rawish
- Institute of Systems Motor Science, Center for Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562 Lübeck, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Frings
- Department of Cognitive Psychology, Faculty of Psychology, University of Trier, 54296 Trier, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan 250014, China
| | - Alexander Münchau
- Institute of Systems Motor Science, Center for Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
5
|
Jamous R, Takacs A, Frings C, Münchau A, Mückschel M, Beste C. Unsigned surprise but not reward magnitude modulates the integration of motor elements during actions. Sci Rep 2023; 13:5379. [PMID: 37009782 PMCID: PMC10068803 DOI: 10.1038/s41598-023-32508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
It seems natural that motor responses unfold smoothly and that we are able to easily concatenate different components of movements to achieve goal-directed actions. Theoretical frameworks suggest that different motor features have to be bound to each other to achieve a coherent action. Yet, the nature of the "glue" (i.e., bindings) between elements constituting a motor sequence and enabling a smooth unfolding of motor acts is not well understood. We examined in how far motor feature bindings are affected by reward magnitude or the effects of an unsigned surprise signal. We show that the consistency of action file binding strength is modulated by unsigned surprise, but not by reward magnitude. On a conceptual and theoretical level, the results provide links between frameworks, which have until now not been brought into connection. In particular, theoretical accounts stating that only the unexpectedness (surprisingness) is essential for action control are connected to meta-control accounts of human action control.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Frings
- Cognitive Psychology Unit, Chair of General Psychology and Methodology, Faculty I - Psychology, University of Trier, Trier, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|