1
|
Yue X, Guo H, Wang G, Li J, Zhai Z, Wang Z, Wang W, Zhao Z, Xia X, Chen C, Cui Y, Wu C, Huang Z, Zhang X. A tailored phytosomes based nose-to-brain drug delivery strategy: Silver bullet for Alzheimer's disease. Bioact Mater 2025; 44:97-115. [DOI: 10.1016/j.bioactmat.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
2
|
Chaudhuri S, Cho M, Stumpff JC, Bice PJ, İş Ö, Ertekin-Taner N, Saykin AJ, Nho K. Cell-specific transcriptional signatures of vascular cells in Alzheimer's disease: perspectives, pathways, and therapeutic directions. Mol Neurodegener 2025; 20:12. [PMID: 39876020 PMCID: PMC11776188 DOI: 10.1186/s13024-025-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD. Here, we provide an overview of rich transcriptional signatures derived from recent single-cell and single-nucleus transcriptomic studies of human brain vascular cells and their implications for targeted therapy for AD. We conducted an in-depth literature search using Medline and Covidence to identify pertinent AD studies that utilized single-cell technologies in human post-mortem brain tissue by focusing on understanding the transcriptional differences in cerebrovascular cell types and subtypes in AD and cognitively normal older adults. We also discuss impaired cellular crosstalk between vascular cells and neuroglial units, as well as astrocytes in AD. Additionally, we contextualize the findings from single-cell studies of distinct endothelial cells, smooth muscle cells, fibroblasts, and pericytes in the human AD brain and highlight pathways for potential therapeutic interventions as a concerted multi-omic effort with spatial transcriptomics technology, neuroimaging, and neuropathology. Overall, we provide a detailed account of the vascular cell-specific transcriptional signatures in AD and their crucial cellular crosstalk with the neuroglial unit.
Collapse
Affiliation(s)
- Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minyoung Cho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Julia C Stumpff
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Dominguez-Gortaire J, Ruiz A, Porto-Pazos AB, Rodriguez-Yanez S, Cedron F. Alzheimer's Disease: Exploring Pathophysiological Hypotheses and the Role of Machine Learning in Drug Discovery. Int J Mol Sci 2025; 26:1004. [PMID: 39940772 PMCID: PMC11816687 DOI: 10.3390/ijms26031004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative dementia, with its complex pathophysiology challenging current treatments. Recent advancements have shifted the focus from the traditionally dominant amyloid hypothesis toward a multifactorial understanding of the disease. Emerging evidence suggests that while amyloid-beta (Aβ) accumulation is central to AD, it may not be the primary driver but rather part of a broader pathogenic process. Novel hypotheses have been proposed, including the role of tau protein abnormalities, mitochondrial dysfunction, and chronic neuroinflammation. Additionally, the gut-brain axis and epigenetic modifications have gained attention as potential contributors to AD progression. The limitations of existing therapies underscore the need for innovative strategies. This study explores the integration of machine learning (ML) in drug discovery to accelerate the identification of novel targets and drug candidates. ML offers the ability to navigate AD's complexity, enabling rapid analysis of extensive datasets and optimizing clinical trial design. The synergy between these themes presents a promising future for more effective AD treatments.
Collapse
Affiliation(s)
- Jose Dominguez-Gortaire
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- Faculty of Biological Sciences, Universidad Central del Ecuador, Quito 170136, Ecuador
- Faculty of Odontology, UTE University, Quito 170902, Ecuador
| | - Alejandra Ruiz
- Faculty of Medical Sciences, Universidad Central del Ecuador, Quito 170136, Ecuador
| | - Ana Belen Porto-Pazos
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- CITIC—Research Center of Information and Communication Technologies, Universidade da Coruña, 15008 A Coruña, Spain
| | - Santiago Rodriguez-Yanez
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- CITEEC—Center for Technological Innovation in Construction and Civil Engineering, Universidade da Coruña, 15008 A Coruña, Spain
| | - Francisco Cedron
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain; (J.D.-G.)
- CITIC—Research Center of Information and Communication Technologies, Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
4
|
Peterfi A, Pinaffi-Langley ACDC, Szarvas Z, Muranyi M, Kaposzta Z, Adams C, Pinto CB, Mukli P, Kotliar K, Yabluchanskiy A. Dynamic retinal vessel analysis: flickering a light into the brain. Front Aging Neurosci 2025; 16:1517368. [PMID: 39834618 PMCID: PMC11743452 DOI: 10.3389/fnagi.2024.1517368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Growing aging populations pose new challenges to public health as the number of people living with dementia grows in tandem. To alleviate the burden of dementia, prodromal signs of cognitive impairment must be recognized and risk factors reduced. In this context, non-invasive techniques may be used to identify early changes and monitor disease progression. Dynamic retinal vessel analysis (DVA) provides an opportunity to measure retinal vasoreactivity in a way that may be comparable to cerebral vasoreactivity, thus providing a window to the brain. Methods We conducted a literature search on PubMed and Scopus to identify studies utilizing DVA to describe retinal vasoreactivity in central nervous system diseases and compare it with brain function and structure. We included original papers with full text in English. Results We identified 11 studies, of which most employed a cross-sectional design (91%). Studies on cerebrovascular diseases reported that retinal vasoreactivity decreased in patient populations compared with that of healthy controls. Studies on cognitive impairment and dementia yielded mixed results, at least in part due to high population heterogeneity. There is also evidence for the association between DVA and brain and cognition parameters such as cerebral blood flow velocity, cerebral microvascular diffusivity, and cognitive function score. Discussion The reviewed papers on DVA and brain function, despite the mixed results, have demonstrated the relationship between retinal vasoreactivity and cerebrovascular function and cognition. Heterogeneity in study populations, procedures, and analyses make comparisons difficult. Studies with larger sample size, clear description of the population and methods, and standardized DVA analysis are needed to elucidate the eye-brain connection and to enhance the translational and clinical applications of DVA.
Collapse
Affiliation(s)
- Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Ana Clara da C. Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Mihaly Muranyi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Zalan Kaposzta
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Cheryl Adams
- Oklahoma Shared Clinical and Translational Resources, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Juelich, Germany
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Hansen CE, Hollaus D, Kamermans A, de Vries HE. Tension at the gate: sensing mechanical forces at the blood-brain barrier in health and disease. J Neuroinflammation 2024; 21:325. [PMID: 39696463 PMCID: PMC11657007 DOI: 10.1186/s12974-024-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain by forming the blood-brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzheimer's disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow (CBF). These altered forces lead to increased vascular permeability, reduced endothelial reactivity to vasoactive mediators, and promote leukocyte transmigration. Whereas the molecular players involved in leukocyte infiltration have been described in detail, the importance of mechanical signalling throughout this process has only recently been recognized. Here, we review relevant features of mechanical forces acting on the BBB under healthy and pathological conditions, as well as the endothelial mechanosensory elements detecting and responding to altered forces. We demonstrate the underlying complexity by focussing on the family of transient receptor potential (TRP) ion channels. A better understanding of these processes will provide insights into the pathogenesis of several neurological disorders and new potential leads for treatment.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - David Hollaus
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Conceição M, Di Filippo LD, Duarte JL, Beserra FP, Gremião MPD, Chorilli M. Repurposing doxycycline for Alzheimer's treatment: Challenges from a nano-based drug delivery perspective. Brain Behav Immun Health 2024; 42:100894. [PMID: 39525305 PMCID: PMC11550769 DOI: 10.1016/j.bbih.2024.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Drug repurposing, also known as drug repositioning, involves identifying new applications for drugs whose effects in a disease are already established. Doxycycline, a broad-spectrum antibiotic belonging to the tetracycline class, has demonstrated potential activity against neurodegenerative diseases like Alzheimer's and Parkinson's. However, despite its promise, the repurposed use of doxycycline encounters challenges in reaching the brain in adequate concentrations to exert its effects. To address this issue, nanostructured systems offer an innovative approach that can enhance brain targeting and the desired therapeutic outcomes. This review discusses the advances in doxycycline repurposing for Alzheimer's disease, presenting physicochemical and biological aspects that permeate doxycycline's repositioning and its application in nano-based delivery systems.
Collapse
Affiliation(s)
- Mariana Conceição
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Fernando Pereira Beserra
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
7
|
Mehta RI, Ranjan M, Haut MW, Carpenter JS, Rezai AR. Focused Ultrasound for Neurodegenerative Diseases. Magn Reson Imaging Clin N Am 2024; 32:681-698. [PMID: 39322357 DOI: 10.1016/j.mric.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases are a leading cause of death and disability and pose a looming global public health crisis. Despite progress in understanding biological and molecular factors associated with these disorders and their progression, effective disease modifying treatments are presently limited. Focused ultrasound (FUS) is an emerging therapeutic strategy for Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these contexts, applications of FUS include neuroablation, neuromodulation, and/or blood-brain barrier opening with and without facilitated intracerebral drug delivery. Here, the authors review preclinical evidence and current and emerging applications of FUS for neurodegenerative diseases and summarize future directions in the field.
Collapse
Affiliation(s)
- Rashi I Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University.
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Marc W Haut
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University
| | - Jeffrey S Carpenter
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Ali R Rezai
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| |
Collapse
|
8
|
Kempuraj D, Dourvetakis KD, Cohen J, Valladares DS, Joshi RS, Kothuru SP, Anderson T, Chinnappan B, Cheema AK, Klimas NG, Theoharides TC. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders. Front Cell Neurosci 2024; 18:1491952. [PMID: 39526043 PMCID: PMC11544127 DOI: 10.3389/fncel.2024.1491952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Kirk D. Dourvetakis
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jessica Cohen
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Daniel Seth Valladares
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rhitik Samir Joshi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sai Puneeth Kothuru
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Tristin Anderson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Baskaran Chinnappan
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Amanpreet K. Cheema
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL, United States
| | - Theoharis C. Theoharides
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Department of Immunology, Tufts, University School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Blum D, Cailliau E, Béhal H, Vidal J, Delaby C, Buée L, Allinquant B, Gabelle A, Bombois S, Lehmann S, Schraen‐Maschke S, Hanon O. Association of caffeine consumption with cerebrospinal fluid biomarkers in mild cognitive impairment and Alzheimer's disease: A BALTAZAR cohort study. Alzheimers Dement 2024; 20:6948-6959. [PMID: 39099181 PMCID: PMC11485411 DOI: 10.1002/alz.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION We investigated the link between habitual caffeine intake with memory impairments and cerebrospinal fluid (CSF) biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. METHODS MCI (N = 147) and AD (N = 116) patients of the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) cohort reported their caffeine intake at inclusion using a dedicated survey. Associations of caffeine consumption with memory impairments and CSF biomarkers (tau, p-tau181, amyloid beta 1-42 [Aβ1-42], Aβ1-40) were analyzed using logistic and analysis of covariance models. RESULTS Adjusted on Apolipoprotein E (APOE ε4), age, sex, education level, and tobacco, lower caffeine consumption was associated with higher risk to be amnestic (OR: 2.49 [95% CI: 1.13 to 5.46]; p = 0.023) and lower CSF Aβ1-42 (p = 0.047), Aβ1-42/Aβ1-40 (p = 0.040), and Aβ1-42/p-tau181 (p = 0.020) in the whole cohort. DISCUSSION Data support the beneficial effect of caffeine consumption to memory impairments and CSF amyloid markers in MCI and AD patients. HIGHLIGHTS We studied the impact of caffeine consumption in the BALTAZAR cohort. Low caffeine intake is associated with higher risk of being amnestic in MCI/AD patients. Caffeine intake is associated with CSF biomarkers in AD patients.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | | | | | - Jean‐Sébastien Vidal
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| | - Constance Delaby
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
- Sant Pau Memory UnitHospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Luc Buée
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Bernadette Allinquant
- Université Paris CitéInstitute of Psychiatry and Neuroscience, Inserm, UMR‐S 1266ParisFrance
| | - Audrey Gabelle
- Université de MontpellierCHU MontpellierMemory Research and Resources CenterDepartment of Neurology, Inserm INM NeuroPEPs TeamExcellence Center of Neurodegenerative DisordersMontpellierFrance
| | - Stéphanie Bombois
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié‐SalpêtrièreParisFrance
| | - Sylvain Lehmann
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
| | - Susanna Schraen‐Maschke
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Olivier Hanon
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| |
Collapse
|
10
|
Wen J, Antoniades M, Yang Z, Hwang G, Skampardoni I, Wang R, Davatzikos C. Dimensional Neuroimaging Endophenotypes: Neurobiological Representations of Disease Heterogeneity Through Machine Learning. Biol Psychiatry 2024; 96:564-584. [PMID: 38718880 PMCID: PMC11374488 DOI: 10.1016/j.biopsych.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes with different brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal magnetic resonance imaging to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, and multiple sclerosis, as well as their potential in a transdiagnostic framework, where neuroanatomical and neurobiological commonalities were assessed across diagnostic boundaries. Subsequently, we summarize relevant machine learning methodologies and their clinical interpretability. We discuss the potential clinical implications of the current findings and envision future research avenues. Finally, we discuss an emerging paradigm called dimensional neuroimaging endophenotypes. Dimensional neuroimaging endophenotypes dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into low-dimensional yet informative, quantitative brain phenotypic representations, serving as robust intermediate phenotypes (i.e., endophenotypes), presumably reflecting the interplay of underlying genetic, lifestyle, and environmental processes associated with disease etiology.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science, University of Southern California, Los Angeles, California.
| | - Mathilde Antoniades
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gyujoon Hwang
- Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rongguang Wang
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory, Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
13
|
Andrade-Guerrero J, Orta-Salazar E, Salinas-Lara C, Sánchez-Garibay C, Rodríguez-Hernández LD, Vargas-Rodríguez I, Barron-Leon N, Ledesma-Alonso C, Diaz-Cintra S, Soto-Rojas LO. Effects of Voluntary Physical Exercise on the Neurovascular Unit in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:11134. [PMID: 37446312 DOI: 10.3390/ijms241311134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Histopathologically, AD presents two pathognomonic hallmarks: (1) neurofibrillary tangles, characterized by intracellular deposits of hyperphosphorylated tau protein, and (2) extracellular amyloid deposits (amyloid plaques) in the brain vasculature (cerebral amyloid angiopathy; CAA). It has been proposed that vascular amyloid deposits could trigger neurovascular unit (NVU) dysfunction in AD. The NVU is composed primarily of astrocytic feet, endothelial cells, pericytes, and basement membrane. Although physical exercise is hypothesized to have beneficial effects against AD, it is unknown whether its positive effects extend to ameliorating CAA and improving the physiology of the NVU. We used the triple transgenic animal model for AD (3xTg-AD) at 13 months old and analyzed through behavioral and histological assays, the effect of voluntary physical exercise on cognitive functions, amyloid angiopathy, and the NVU. Our results show that 3xTg-AD mice develop vascular amyloid deposits which correlate with cognitive deficits and NVU alteration. Interestingly, the physical exercise regimen decreases amyloid angiopathy and correlates with an improvement in cognitive function as well as in the underlying integrity of the NVU components. Physical exercise could represent a key therapeutic approach in cerebral amyloid angiopathy and NVU stability in AD patients.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Erika Orta-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Citlaltepetl Salinas-Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico
| | - Carlos Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico
| | - Luis Daniel Rodríguez-Hernández
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Isaac Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Nayeli Barron-Leon
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Luis O Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
14
|
Mehta RI, Carpenter JS, Mehta RI, Haut MW, Wang P, Ranjan M, Najib U, D'Haese PF, Rezai AR. Ultrasound-mediated blood-brain barrier opening uncovers an intracerebral perivenous fluid network in persons with Alzheimer's disease. Fluids Barriers CNS 2023; 20:46. [PMID: 37328855 DOI: 10.1186/s12987-023-00447-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is under investigation as a therapeutic modality for neurodegeneration, yet its effects in humans are incompletely understood. Here, we assessed physiologic responses to FUS administered in multifocal brain sites of persons with Alzheimer's disease (AD). METHODS At a tertiary neuroscience institute, eight participants with AD (mean age 65, 38% F) enrolled in a phase 2 clinical trial underwent three successive targeted BBB opening procedures at 2 week intervals using a 220 kHz FUS transducer in combination with systemically administered microbubbles. In all, 77 treatment sites were evaluated and encompassed hippocampal, frontal, and parietal brain regions. Post-FUS imaging changes, including susceptibility effects and spatiotemporal gadolinium-based contrast agent enhancement patterns, were analyzed using serial 3.0-Tesla MRI. RESULTS Post-FUS MRI revealed expected intraparenchymal contrast extravasation due to BBB opening at all targeted brain sites. Immediately upon BBB opening, hyperconcentration of intravenously-administered contrast tracer was consistently observed around intracerebral veins. Following BBB closure, within 24-48 h of FUS intervention, permeabilization of intraparenchymal veins was observed and persisted for up to one week. Notably, extraparenchymal meningeal venous permeabilization and associated CSF effusions were also elicited and persisted up to 11 days post FUS treatment, prior to complete spontaneous resolution in all participants. Mild susceptibility effects were detected, however no overt intracranial hemorrhage or other serious adverse effects occurred in any participant. CONCLUSIONS FUS-mediated BBB opening is safely and reproducibly achieved in multifocal brain regions of persons with AD. Post-FUS tracer enhancement phenomena suggest the existence of a brain-wide perivenous fluid efflux pathway in humans and demonstrate reactive physiological changes involving these conduit spaces in the delayed, subacute phase following BBB disruption. The delayed reactive venous and perivenous changes are consistent with a dynamic, zonal exudative response to upstream capillary manipulation. Further preclinical and clinical investigations of these FUS-related imaging phenomena and of intracerebral perivenous compartment changes are needed to elucidate physiology of this pathway as well as biological effects of FUS administered with and without adjuvant neurotherapeutics. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03671889, registered 9/14/2018.
Collapse
Affiliation(s)
- Rashi I Mehta
- Department of Neuroradiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA.
| | - Jeffrey S Carpenter
- Department of Neuroradiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV, 26506, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Rupal I Mehta
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Marc W Haut
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, 26506, USA
- Department of Neurology, West Virginia University, Morgantown, WV, 26506, USA
| | - Peng Wang
- Department of Neuroradiology, West Virginia University, 1 Medical Center Dr, Morgantown, WV, 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
| | - Manish Ranjan
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
- Department of Neurosurgery, West Virginia University, Morgantown, WV, 26506, USA
| | - Umer Najib
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
- Department of Neurology, West Virginia University, Morgantown, WV, 26506, USA
| | | | - Ali R Rezai
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
- Department of Neurosurgery, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
15
|
Kostes WW, Brafman DA. The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells 2023; 12:1204. [PMID: 37190113 PMCID: PMC10136584 DOI: 10.3390/cells12081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
16
|
Xia ZD, Ma RX, Wen JF, Zhai YF, Wang YQ, Wang FY, Liu D, Zhao XL, Sun B, Jia P, Zheng XH. Pathogenesis, Animal Models, and Drug Discovery of Alzheimer's Disease. J Alzheimers Dis 2023; 94:1265-1301. [PMID: 37424469 DOI: 10.3233/jad-230326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a chronic neurodegenerative disease induced by multiple factors. The high incidence and the aging of the global population make it a growing global health concern with huge implications for individuals and society. The clinical manifestations are progressive cognitive dysfunction and lack of behavioral ability, which not only seriously affect the health and quality of life of the elderly, but also bring a heavy burden to the family and society. Unfortunately, almost all the drugs targeting the classical pathogenesis have not achieved satisfactory clinical effects in the past two decades. Therefore, the present review provides more novel ideas on the complex pathophysiological mechanisms of AD, including classical pathogenesis and a variety of possible pathogenesis that have been proposed in recent years. It will be helpful to find out the key target and the effect pathway of potential drugs and mechanisms for the prevention and treatment of AD. In addition, the common animal models in AD research are outlined and we examine their prospect for the future. Finally, Phase I, II, III, and IV randomized clinical trials or on the market of drugs for AD treatment were searched in online databases (Drug Bank Online 5.0, the U.S. National Library of Medicine, and Alzforum). Therefore, this review may also provide useful information in the research and development of new AD-based drugs.
Collapse
Affiliation(s)
- Zhao-Di Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Ruo-Xin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Jin-Feng Wen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Yu-Fei Zhai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Yu-Qi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Feng-Yun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Xiao-Long Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Bao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, PR China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| |
Collapse
|