1
|
Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J Adv Res 2025; 70:103-124. [PMID: 38729561 PMCID: PMC11976416 DOI: 10.1016/j.jare.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapies have yielded beneficial effects in a broad range of preclinical models and clinical trials for human diseases. In the context of MSC transplantation, it is widely recognized that the main mechanism for the regenerative potential of MSCs is not their differentiation, with in vivo data revealing transient and low engraftment rates. Instead, MSCs therapeutic effects are mainly attributed to its secretome, i.e., paracrine factors secreted by these cells, further offering a more attractive and innovative approach due to the effectiveness and safety of a cell-free product. AIM OF REVIEW In this review, we will discuss the potential benefits of MSC-derived secretome in regenerative medicine with particular focus on respiratory, hepatic, and neurological diseases. Both free and vesicular factors of MSC secretome will be detailed. We will also address novel potential strategies capable of improving their healing potential, namely by delivering important regenerative molecules according to specific diseases and tissue needs, as well as non-clinical and clinical studies that allow us to dissect their mechanisms of action. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC-derived secretome includes both soluble and non-soluble factors, organized in extracellular vesicles (EVs). Importantly, besides depending on the cell origin, the characteristics and therapeutic potential of MSC secretome is deeply influenced by external stimuli, highlighting the possibility of optimizing their characteristics through preconditioning approaches. Nevertheless, the clarity around their mechanisms of action remains ambiguous, whereas the need for standardized procedures for the successful translation of those products to the clinics urges.
Collapse
Affiliation(s)
- Catarina M Trigo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio P Camões
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P Miranda
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Sun J, Su F, Chen Y, Wang T, Ali W, Jin H, Xiong L, Ma Y, Liu Z, Zou H. Co-exposure to PVC microplastics and cadmium induces oxidative stress and fibrosis in duck pancreas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172395. [PMID: 38608882 DOI: 10.1016/j.scitotenv.2024.172395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangyu Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Hengqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
4
|
Huang L, Zhang S, Wu J, Guo B, Gao T, Shah SZA, Huang B, Li Y, Zhu B, Fan J, Wang L, Xiao Y, Liu W, Tian Y, Fang Z, Lv Y, Xie L, Yao S, Ke G, Huang X, Huang Y, Li Y, Jia Y, Li Z, Feng G, Huo Y, Li W, Zhou Q, Hao J, Hu B, Chen H. Immunity-and-matrix-regulatory cells enhance cartilage regeneration for meniscus injuries: a phase I dose-escalation trial. Signal Transduct Target Ther 2023; 8:417. [PMID: 37907503 PMCID: PMC10618459 DOI: 10.1038/s41392-023-01670-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Immunity-and-matrix-regulatory cells (IMRCs) derived from human embryonic stem cells have unique abilities in modulating immunity and regulating the extracellular matrix, which could be mass-produced with stable biological properties. Despite resemblance to mesenchymal stem cells (MSCs) in terms of self-renew and tri-lineage differentiation, the ability of IMRCs to repair the meniscus and the underlying mechanism remains undetermined. Here, we showed that IMRCs demonstrated stronger immunomodulatory and pro-regenerative potential than umbilical cord MSCs when stimulated by synovial fluid from patients with meniscus injury. Following injection into the knees of rabbits with meniscal injury, IMRCs enhanced endogenous fibrocartilage regeneration. In the dose-escalating phase I clinical trial (NCT03839238) with eighteen patients recruited, we found that intra-articular IMRCs injection in patients was safe over 12 months post-grafting. Furthermore, the effective results of magnetic resonance imaging (MRI) of meniscus repair and knee functional scores suggested that 5 × 107 cells are optimal for meniscus injury treatment. In summary, we present the first report of a phase I clinical trial using IMRCs to treat meniscus injury. Our results demonstrated that intra-articular injection of IMRCs is a safe and effective therapy by providing a permissive niche for cartilage regeneration.
Collapse
Affiliation(s)
- Liangjiang Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Baojie Guo
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tingting Gao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Sayed Zulfiqar Ali Shah
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Fan
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liu Wang
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yani Xiao
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Wenjing Liu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yao Tian
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhengyu Fang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Lv
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfeng Xie
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaotan Ke
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Yujuan Li
- Beijing Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Yi Jia
- Beijing Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Zhongwen Li
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guihai Feng
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Huo
- Beijing Key Lab for Pre-clinical Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Wei Li
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Hao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Baoyang Hu
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|