1
|
Berlin A, Fischer NA, Clark ME, Kar D, Swain TA, Martindale RM, McGwin G, Crosson JN, Sloan KR, Owsley C, Curcio CA. Quantitative Autofluorescence at AMD's Beginnings Highlights Retinal Topography and Grading System Differences: ALSTAR2 Baseline. Ophthalmologica 2024; 247:1-13. [PMID: 38599207 PMCID: PMC11499297 DOI: 10.1159/000538696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION The aims of the study were to describe baseline quantitative (short-wavelength) autofluorescence (qAF) findings in a large pseudophakic cohort at age-related macular degeneration (AMD)'s beginnings and to assess qAF8 as an outcome measure and evaluate Age-Related Eye Disease Study (AREDS) and Beckman grading systems. METHODS In the ALSTAR2 baseline cohort (NCT04112667), 346 pseudophakic eyes of 188 persons (74.0 ± 5.5 years) were classified as normal (N = 160 by AREDS, 158 by Beckman), early AMD (eAMD) (N = 104, 66), and intermediate AMD (iAMD) (N = 82, 122). Groups were compared via mean qAF intensities in a 6°-8° annulus (qAF8) and maps of differences between observations and the overall mean, divided by standard deviation (Z-score). RESULTS qAF8 did not differ significantly among diagnostic groups by either stratification (p = 0.0869 AREDS; p = 0.0569 by Beckman). Notably, 45 eyes considered eAMD by AREDS became iAMD by Beckman. For AREDS-stratified eyes, Z-score maps showed higher centrally located qAF for normal, near the mean in eAMD, and lower values for iAMD. Maps deviated from this pattern for Beckman-stratified eyes. CONCLUSIONS In a large sample of pseudophakic eyes, qAF8 does not differ overall from normal aging to iAMD but also does not capture the earliest AMD activity in the macula lutea. AREDS classification gives results more consistent with a slow decline in histologic autofluorescence than Beckman classification.
Collapse
Affiliation(s)
- Andreas Berlin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA,
- University Hospital Würzburg, Würzburg, Germany,
| | - Nathan A Fischer
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard M Martindale
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason N Crosson
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Retina Consultants of Alabama, Birmingham, Alabama, USA
| | - Kenneth R Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Bowles Johnson KE, Tang JAH, Kunala K, Huynh KT, Parkins K, Yang Q, Hunter JJ. Fluorescence Lifetime Imaging of Human Retinal Pigment Epithelium in Pentosan Polysulfate Toxicity Using Adaptive Optics Scanning Light Ophthalmoscopy. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 38630675 PMCID: PMC11044828 DOI: 10.1167/iovs.65.4.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/16/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Fluorescence lifetime ophthalmoscopy (FLIO) is an emerging clinical modality that could provide biomarkers of retinal health beyond fluorescence intensity. Adaptive optics (AO) ophthalmoscopy provides the confocality to measure fluorescence lifetime (FL) primarily from the retinal pigment epithelium (RPE) whereas clinical FLIO has greater influence from fluorophores in the inner retina and lens. Adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO) measures of FL in vivo could provide insight into RPE health at different stages of disease. In this study, we assess changes in pentosan polysulfate sodium (PPS) toxicity, a recently described toxicity that has clinical findings similar to advanced age-related macular degeneration. Methods AOFLIO was performed on three subjects with PPS toxicity (57-67 years old) and six age-matched controls (50-64 years old). FL was analyzed with a double exponential decay curve fit and with phasor analysis. Regions of interest (ROIs) were subcategorized based on retinal features on optical coherence tomography (OCT) and compared to age-matched controls. Results Twelve ROIs from PPS toxicity subjects met the threshold for analysis by curve fitting and 15 ROIs met the threshold for phasor analysis. Subjects with PPS toxicity had prolonged FL compared to age-matched controls. ROIs of RPE degeneration had the longest FLs, with individual pixels extending longer than 900 ps. Conclusions Our study shows evidence that AOFLIO can provide meaningful information in outer retinal disease beyond what is obtainable from fluorescence intensity alone. More studies are needed to determine the prognostic value of AOFLIO.
Collapse
Affiliation(s)
| | - Janet A. H. Tang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Karteek Kunala
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jennifer J. Hunter
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Kozhevnikova O. Advanced Research in Age-Related Macular Degeneration: Special Issue. Biomedicines 2024; 12:392. [PMID: 38397993 PMCID: PMC10887219 DOI: 10.3390/biomedicines12020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease that is the leading cause of irreversible vision loss in people over 55 years of age [...].
Collapse
Affiliation(s)
- Oyuna Kozhevnikova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Bourauel L, Vaisband M, von der Emde L, Bermond K, Tarau IS, Heintzmann R, Holz FG, Curcio CA, Hasenauer J, Ach T. Spectral Analysis of Human Retinal Pigment Epithelium Cells in Healthy and AMD Eyes. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38170540 PMCID: PMC10768704 DOI: 10.1167/iovs.65.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose Retinal pigment epithelium (RPE) cells show strong autofluorescence (AF). Here, we characterize the AF spectra of individual RPE cells in healthy eyes and those affected by age-related macular degeneration (AMD) and investigate associations between AF spectral response and the number of intracellular AF granules per cell. Methods RPE-Bruch's membrane flatmounts of 22 human donor eyes, including seven AMD-affected eyes (early AMD, three; geographic atrophy, one; neovascular, three) and 15 unaffected macula (<51 years, eight; >80 years, seven), were imaged at the fovea, perifovea, and near-periphery using confocal AF microscopy (excitation 488 nm), and emission spectra were recorded (500-710 nm). RPE cells were manually segmented with computer assistance and stratified by disease status, and emission spectra were analyzed using cubic spline transforms. Intracellular granules were manually counted and classified. Linear mixed models were used to investigate associations between spectra and the number of intracellular granules. Results Spectra of 5549 RPE cells were recorded. The spectra of RPE cells in healthy eyes showed similar emission curves that peaked at 580 nm for fovea and perifovea and at 575 and 580 nm for near-periphery. RPE spectral curves in AMD eyes differed significantly, being blue shifted by 10 nm toward shorter wavelengths. No significant association coefficients were found between wavelengths and granule counts. Conclusions This large series of RPE cell emission spectra at precisely predefined retinal locations showed a hypsochromic spectral shift in AMD. Combining different microscopy techniques, our work has identified cellular RPE spectral AF and subcellular granule properties that will inform future in vivo investigations using single-cell imaging.
Collapse
Affiliation(s)
- Leonie Bourauel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Marc Vaisband
- Institute of Life & Medical Sciences, University of Bonn, Bonn, Germany
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute Laboratory for Immunological and Molecular Cancer Research, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Katharina Bermond
- Department of Ophthalmology, Ludwigshafen Hospital, Ludwigshafen, Germany
| | - Ioana Sandra Tarau
- Department of Ophthalmology, Asklepios Klinik Nord - Heidberg, Hamburg, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Jena, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Alabama, Alabama, United States
| | - Jan Hasenauer
- Institute of Life & Medical Sciences, University of Bonn, Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|