1
|
Barzegar S, Kakies CFM, Ciupercӑ D, Wischnewski M. Transcranial alternating current stimulation for investigating complex oscillatory dynamics and interactions. Int J Psychophysiol 2025; 212:112579. [PMID: 40315997 DOI: 10.1016/j.ijpsycho.2025.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Neural oscillations play a fundamental role in human cognition and behavior. While electroencephalography (EEG) and related methods provide precise temporal recordings of these oscillations, they are limited in their ability to generate causal conclusions. Transcranial alternating current stimulation (tACS) has emerged as a promising non-invasive neurostimulation technique to modulate neural oscillations, which offers insights into their functional role and relation to human cognition and behavior. Originally, tACS is applied between two or more electrodes at a given frequency. However, recent advances have aimed to apply different current waveforms to target specific oscillatory dynamics. This systematic review evaluates the efficacy of non-standard tACS applications designed to investigate oscillatory patterns beyond simple sinusoidal stimulation. We categorized these approaches into three key domains: (1) phase synchronization techniques, including in-phase, anti-phase, and traveling wave stimulation; (2) non-sinusoidal tACS, which applies alternative waveforms such as composite, broadband or triangular oscillations; and (3) amplitude-modulated tACS and temporal interference stimulation, which allow for concurrent EEG recordings and deeper cortical targeting. While a number of studies provide evidence for the added value of these non-standard tACS procedures, other studies show opposing or null findings. Crucially, the number of studies for most applications is currently low, and as such, the goal of this review is to highlight both the promise and current limitations of these techniques, providing a foundation for future research in neurostimulation.
Collapse
Affiliation(s)
- Samira Barzegar
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Carolina F M Kakies
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Dorina Ciupercӑ
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Miles Wischnewski
- Department of Psychology, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Debnath R, Elyamany O, Iffland JR, Rauh J, Siebert M, Andraes E, Leicht G, Mulert C. Theta transcranial alternating current stimulation over the prefrontal cortex enhances theta power and working memory performance. Front Psychiatry 2025; 15:1493675. [PMID: 39876999 PMCID: PMC11772280 DOI: 10.3389/fpsyt.2024.1493675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations. This study investigated whether 5 Hz tACS could modulate neural oscillations in the prefrontal cortex and how this modulation impacts performance in working memory (WM) tasks. Method In two sessions, 28 healthy participants received 5 Hz tACS or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC) while performing tasks with high and low WM loads. Resting-state EEG was recorded before and after stimulations for 5 minutes. EEG power was measured at electrodes surrounding the stimulation site. Results The results showed that tACS significantly improved reaction time (RT) compared to sham stimulation. This effect was task-specific, as tACS improved RT for hit responses only in high WM load trials, with no impact on low-load trials. Moreover, tACS significantly increased EEG power at 5 Hz and in the theta band compared to pre-stimulation levels. Discussion These findings demonstrate that tACS applied over left DLPFC modulates post-stimulation brain oscillations at the stimulation sites - known as tACS after-effects. Furthermore, the results suggest that 5 Hz tACS enhances response speed by elevating task-related activity in the prefrontal cortex to an optimal level for task performance. Conclusion In summary, the findings highlight the potential of tACS as a technique for modulating specific brain oscillations, with implications for research and therapeutic interventions.
Collapse
Affiliation(s)
- Ranjan Debnath
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Osama Elyamany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| | - Jona Ruben Iffland
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Siebert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Elisa Andraes
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| |
Collapse
|
3
|
Lee TW, Tramontano G. Connectivity changes following transcranial alternating current stimulation at 5-Hz: an EEG study. AIMS Neurosci 2024; 11:439-448. [PMID: 39801795 PMCID: PMC11712229 DOI: 10.3934/neuroscience.2024026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 01/16/2025] Open
Abstract
Transcranial alternating current stimulation (tACS) at 5-Hz to the right hemisphere can alleviate anxiety symptoms. We aimed to explore the connectivity changes following the treatment. We collected electroencephalography (EEG) data from 24 participants with anxiety disorders before and after the tACS treatment during a single session. Electric stimulation was applied over the right hemisphere, with 1.0 mA at F4, 1.0 mA at P4, and 2.0 mA at T8, following the 10-10 EEG convention. With eLORETA, the scalp signals were transformed into the cortex's current source density. We assessed the connectivity changes at theta frequency between the centers of Brodmann area (BA) 6/8 (frontal), BA 39/40 (parietal), and BA 21 (middle temporal). Functional connectivity was indicated by lagged coherences and lagged phase synchronization. Paired t-tests were used to quantify the differences statistically. We observed enhanced lagged phase synchronization at theta frequency between the frontal and parietal regions (P = 0.002) and between the parietal and temporal regions (P = 0.005) after Bonferroni correction. Applying tACS 5-Hz over the right hemisphere enhanced inter-regional interaction, which was spectrum-specific and mainly mediated by phase rather than power synchrony. The potential neural mechanisms are discussed.
Collapse
Affiliation(s)
| | - Gerald Tramontano
- The NeuroCognitive Institute (NCI) Clinical Research Foundation, NJ 07856, US
| |
Collapse
|
4
|
Gholamali Nezhad F, Martin J, Tassone VK, Swiderski A, Demchenko I, Khan S, Chaudhry HE, Palmisano A, Santarnecchi E, Bhat V. Transcranial alternating current stimulation for neuropsychiatric disorders: a systematic review of treatment parameters and outcomes. Front Psychiatry 2024; 15:1419243. [PMID: 39211537 PMCID: PMC11360874 DOI: 10.3389/fpsyt.2024.1419243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background Transcranial alternating current stimulation (tACS) alters cortical excitability with low-intensity alternating current and thereby modulates aberrant brain oscillations. Despite the recent increase in studies investigating the feasibility and efficacy of tACS in treating neuropsychiatric disorders, its mechanisms, as well as optimal stimulation parameters, are not fully understood. Objectives This systematic review aimed to compile human research on tACS for neuropsychiatric disorders to delineate typical treatment parameters for these conditions and evaluate its outcomes. Methods A search for published studies and unpublished registered clinical trials was conducted through OVID (MEDLINE, PsycINFO, and Embase), ClinicalTrials.gov, and the International Clinical Trials Registry Platform. Studies utilizing tACS to treat neuropsychiatric disorders in a clinical trial setting were included. Results In total, 783 published studies and 373 clinical trials were screened; 53 published studies and 70 clinical trials were included. Published studies demonstrated a low risk of bias, as assessed by the Joanna Briggs Institute Critical Appraisal Tools. Neurocognitive, psychotic, and depressive disorders were the most common disorders treated with tACS. Both published studies (58.5%) and registered clinical trials (52%) most commonly utilized gamma frequency bands and tACS was typically administered at an intensity of 2 mA peak-to-peak, once daily for 20 or fewer sessions. Although the targeted brain locations and tACS montages varied across studies based on the outcome measures and specific pathophysiology of the disorders, the dorsolateral prefrontal cortex (DLPFC) was the most common target in both published studies (30.2%) and registered clinical trials (25.6%). Across studies that published results on tACS outcome measures, tACS resulted in enhanced symptoms and/or improvements in overall psychopathology for neurocognitive (all 11 studies), psychotic (11 out of 14 studies), and depressive (7 out of 8 studies) disorders. Additionally, 17 studies reported alterations in the power spectrum of the electroencephalogram around the entrained frequency band at the targeted locations following tACS. Conclusion Behavioral and cognitive symptoms have been positively impacted by tACS. The most consistent changes were reported in cognitive symptoms following gamma-tACS over the DLPFC. However, the paucity of neuroimaging studies for each neuropsychiatric condition highlights the necessity for replication studies employing biomarker- and mechanism-centric approaches.
Collapse
Affiliation(s)
- Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Josh Martin
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K. Tassone
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alyssa Swiderski
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Somieya Khan
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Hamzah E. Chaudhry
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Annalisa Palmisano
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Liu Y, Luo Y, Zhang N, Zhang X, Liu S. A scientometric review of the growing trends in transcranial alternating current stimulation (tACS). Front Hum Neurosci 2024; 18:1362593. [PMID: 38510513 PMCID: PMC10950919 DOI: 10.3389/fnhum.2024.1362593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Objective The aim of the current study was to provide a comprehensive picture of tACS-related research in the last decade through a bibliometric approach in order to systematically analyze the current status and cutting-edge trends in this field. Methods Articles and review articles related to tACS from 2013 to 2022 were searched on the Web of Science platform. A bibliometric analysis of authors, journals, countries, institutions, references, and keywords was performed using CiteSpace (6.2.R2), VOSviewer (1.6.19), Scimago Graphica (1.0.30), and Bibliometrix (4.2.2). Results A total of 602 papers were included. There was an overall increase in annual relevant publications in the last decade. The most contributing author was Christoph S. Herrmann. Brain Stimulation was the most prolific journal. The most prolific countries and institutions were Germany and Harvard University, respectively. Conclusion The findings reveal the development prospects and future directions of tACS and provide valuable references for researchers in the field. In recent years, the keywords "gamma," "transcranial direct current simulation," and "Alzheimer's disease" that have erupted, as well as many references cited in the outbreak, have provided certain clues for the mining of research prefaces. This will act as a guide for future researchers in determining the path of tACS research.
Collapse
Affiliation(s)
- Yuanli Liu
- Department of Psychology, School of Humanities and Social Sciences, Anhui Agricultural University, Hefei, China
| | - Yulin Luo
- Department of Psychology, School of Humanities and Social Sciences, Anhui Agricultural University, Hefei, China
| | - Na Zhang
- Department of Information Management, Anhui Vocational College of Police Officers, Hefei, China
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, Anhui, China
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Shen Liu
- Department of Psychology, School of Humanities and Social Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Zhang R, Ren J, Zhang C. Efficacy of transcranial alternating current stimulation for schizophrenia treatment: A systematic review. J Psychiatr Res 2023; 168:52-63. [PMID: 37897837 DOI: 10.1016/j.jpsychires.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is an innovative noninvasive technique in brain stimulation that involves applying a low-intensity electrical current to the scalp. And increasing evidence has revealed its potential in schizophrenia treatment. OBJECTIVE This systematic review aimed to evaluate the efficacy of tACS as a novel neurostimulation technique for improving cognitive impairment and alleviating psychotic symptoms in schizophrenia. Additionally, this review attempted to explore the impact of stimulation parameters on the effectiveness of tACS treatment. METHODS A systematic literature search was conducted across five databases, including Web of Science, Embase, PubMed, CENTRAL, and PsycINFO, to identify studies investigating the use of tACS in schizophrenia. Only studies that involved the experimental use of tACS in patients with schizophrenia were included in this review. RESULTS Nineteen studies were included in this review. The most frequently used current intensities were 2 mA and 1 mA, and the most commonly used frequencies were alpha (10 Hz), theta (4.5 Hz and 6 Hz), and gamma (40 Hz). Some studies showed that tACS may have a potential therapeutic effect by improving cognitive functions in various cognitive domains and/or ameliorating negative symptoms, hallucinations, and delusions in patients with schizophrenia, while others showed no significant change. These studies also implicated that tACS treatment is safe and well tolerated. CONCLUSIONS Overall, this systematic review suggests that tACS has promise as a novel, effective, and adjunctive treatment approach for treating schizophrenia. Future research is needed to determine the optimal parameters of tACS for treating this complex disorder.
Collapse
Affiliation(s)
- Rong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juanjuan Ren
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|