1
|
Feng T, Zheng H, Zhang Z, Fan P, Yang X. Mechanism and therapeutic targets of the involvement of a novel lysosomal proton channel TMEM175 in Parkinson's disease. Ageing Res Rev 2024; 100:102373. [PMID: 38960046 DOI: 10.1016/j.arr.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD), recognized as the second most prevalent neurodegenerative disease in the aging population, presents a significant challenge due to the current lack of effective treatment methods to mitigate its progression. Many pathogenesis of PD are related to lysosomal dysfunction. Moreover, extensive genetic studies have shown a significant correlation between the lysosomal membrane protein TMEM175 and the risk of developing PD. Building on this discovery, TMEM175 has been identified as a novel potassium ion channel. Intriguingly, further investigations have found that potassium ion channels gradually close and transform into hydrion "excretion" channels in the microenvironment of lysosomes. This finding was further substantiated by studies on TMEM175 knockout mice, which exhibited pronounced motor dysfunction in pole climbing and suspension tests, alongside a notable reduction in dopamine neurons within the substantia nigra compacta. Despite these advancements, the current research landscape is not without its controversies. In light of this, the present review endeavors to methodically examine and consolidate a vast array of recent literature on TMEM175. This comprehensive analysis spans from the foundational research on the structure and function of TMEM175 to expansive population genetics studies and mechanism research utilizing cellular and animal models.A thorough understanding of the structure and function of TMEM175, coupled with insights into the intricate mechanisms underpinning lysosomal dysfunction in PD dopaminergic neurons, is imperative. Such knowledge is crucial for pinpointing precise intervention targets, thereby paving the way for novel therapeutic strategies that could potentially alter the neurodegenerative trajectory of PD.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China
| | | | - Zhan Zhang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Peidong Fan
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China; Xinjiang Key Laboratory of Nervous System Disease Research, Urumqi 830063,China; Xinjiang Clinical Research Center for Nervous System Diseases, Urumqi 830063, China; Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
2
|
Homolak J, Joja M, Grabaric G, Schiatti E, Virag D, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. The Absence of Gastrointestinal Redox Dyshomeostasis in the Brain-First Rat Model of Parkinson's Disease Induced by Bilateral Intrastriatal 6-Hydroxydopamine. Mol Neurobiol 2024; 61:5481-5493. [PMID: 38200352 PMCID: PMC11249596 DOI: 10.1007/s12035-023-03906-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The gut-brain axis plays an important role in Parkinson's disease (PD) by acting as a route for vagal propagation of aggregated α-synuclein in the gut-first endophenotype and as a mediator of gastrointestinal dyshomeostasis via the nigro-vagal pathway in the brain-first endophenotype of the disease. One important mechanism by which the gut-brain axis may promote PD is by regulating gastrointestinal redox homeostasis as overwhelming evidence suggests that oxidative stress plays a key role in the etiopathogenesis and progression of PD and the gastrointestinal tract maintains redox homeostasis of the organism by acting as a critical barrier to environmental and microbiological electrophilic challenges. The present aim was to utilize the bilateral intrastriatal 6-hydroxydopamine (6-OHDA) brain-first PD model to study the effects of isolated central pathology on redox homeostasis of the gastrointestinal tract. Three-month-old male Wistar rats were either not treated (intact controls; CTR) or treated bilaterally intrastriatally with vehicle (CIS) or 6-OHDA (6-OHDA). Motor deficits were assessed with the rotarod performance test, and the duodenum, ileum, and colon were dissected for biochemical analyses 12 weeks after the treatment. Lipid peroxidation, total antioxidant capacity, low-molecular-weight thiols, and protein sulfhydryls, the activity of total and Mn/Fe superoxide dismutases, and total and azide-insensitive catalase/peroxidase were measured. Both univariate and multivariate models analyzing redox biomarkers indicate that significant disturbances in gastrointestinal redox balance are not present. The findings demonstrate that motor impairment observed in the brain-first 6-OHDA model of PD can occur without concurrent redox imbalances in the gastrointestinal system.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Interfaculty Institute of Microbiology and Infection Medicine & Cluster of Excellence "Controlling Microbes to Fight Infections,", University of Tübingen, Tübingen, Germany.
| | - Mihovil Joja
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gracia Grabaric
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Emiliano Schiatti
- Faculty of Medicine and Surgery, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Davor Virag
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia
| |
Collapse
|
3
|
Homolak J, De Busscher J, Zambrano-Lucio M, Joja M, Virag D, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Altered Secretion, Constitution, and Functional Properties of the Gastrointestinal Mucus in a Rat Model of Sporadic Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2667-2682. [PMID: 37477640 PMCID: PMC10401635 DOI: 10.1021/acschemneuro.3c00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
The gastrointestinal (GI) system is affected in Alzheimer's disease (AD); however, it is currently unknown whether GI alterations arise as a consequence of central nervous system (CNS) pathology or play a causal role in the pathogenesis. GI mucus is a possible mediator of GI dyshomeostasis in neurological disorders as the CNS controls mucus production and secretion via the efferent arm of the brain-gut axis. The aim was to use a brain-first model of sporadic AD induced by intracerebroventricular streptozotocin (STZ-icv; 3 mg/kg) to dissect the efferent (i.e., brain-to-gut) effects of isolated central neuropathology on the GI mucus. Morphometric analysis of goblet cell mucigen granules revealed altered GI mucus secretion in the AD model, possibly mediated by the insensitivity of AD goblet cells to neurally evoked mucosal secretion confirmed by ex vivo cholinergic stimulation of isolated duodenal rings. The dysfunctional efferent control of the GI mucus secretion results in altered biochemical composition of the mucus associated with reduced mucin glycoprotein content, aggregation, and binding capacity in vitro. Finally, functional consequences of the reduced barrier-forming capacity of the mucin-deficient AD mucus are demonstrated using the in vitro two-compartment caffeine diffusion interference model. Isolated central AD-like neuropathology results in the loss of efferent control of GI homeostasis via the brain-gut axis and is characterized by the insensitivity to neurally evoked mucosal secretion, altered mucus constitution with reduced mucin content, and reduced barrier-forming capacity, potentially increasing the susceptibility of the STZ-icv rat model of AD to GI and systemic inflammation induced by intraluminal toxins, microorganisms, and drugs.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | | | - Miguel Zambrano-Lucio
- School
of Medicine, Autonomous University of Nuevo
Leon, Monterrey, Nuevo Leon 66455, Mexico
| | - Mihovil Joja
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Department
of Infection and Immunity, Luxembourg Institute
of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Faculty
of
Science, Technology and Medicine, University
of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Davor Virag
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Ana Knezovic
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology, University of Zagreb School
of Medicine, 10 000 Zagreb, Croatia
- Croatian
Institute for Brain Research, University
of Zagreb School of Medicine, 10 000 Zagreb, Croatia
| |
Collapse
|