1
|
Jiang L, Meng Q, Liu L, Li W. A Comprehensive Review on Molecular Mechanisms, Treatments, and Brief Role of Natural Products in Hepatocellular Cancer. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241284873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Most initial liver cancers are hepatocellular carcinomas (HCC), which make up the vast majority of cases. Hepatitis B or C virus infection as well as alcohol consumption is among the key risk factors. The significance of the most intriguing soluble factors as indicators for early diagnosis and as suggested targets for therapy in light of the increasing challenges in precision medicine. The development of HCC is influenced by a complex combination between pro-inflammatory and anti-inflammatory cytokines and their signalling cascades. Recently,researchers are aims to assess the potential of a number of distinct molecular cascade/cascade including cytokines to function as key players with particular underlying etiologies. Increasing our knowledge of the signaling network that links retro differentiation and inflammationmay help us find novel therapeutic targets and develop combined therapies or treatments that work against tumors with a significant degree of heterogeneity. With nursing processes at its center, comprehensive nursing care is a new nursing paradigm that combines the benefits of primary and group nursin g as well as a perfect synthesis of many nursing metrics like nursing philosophy, nursing plan, and nursing quality evaluation. In order to treat patients with serious liver diseases like cancer, it can conduct nursing interventions item by item in accordance with the unique disease conditions of each patient and combine efficient therapeutic approaches with high-quality nursing modes. Dietary natural products, including fruits, vegetables, and spices, may prevent and treat liver cancer by inhibiting tumor growth, protecting the liver, and enhancing chemotherapy.
Collapse
Affiliation(s)
- Linlin Jiang
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Qin Meng
- Department of Nursing, Huaian Hospital of Huaian City, Huaian Jiangsu,China
| | - Lixiu Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Weihang Li
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| |
Collapse
|
2
|
Dong T, Zhu W, Yang Z, Matos Pires NM, Lin Q, Jing W, Zhao L, Wei X, Jiang Z. Advances in heart failure monitoring: Biosensors targeting molecular markers in peripheral bio-fluids. Biosens Bioelectron 2024; 255:116090. [PMID: 38569250 DOI: 10.1016/j.bios.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs), especially chronic heart failure, threaten many patients' lives worldwide. Because of its slow course and complex causes, its clinical screening, diagnosis, and prognosis are essential challenges. Clinical biomarkers and biosensor technologies can rapidly screen and diagnose. Multiple types of biomarkers are employed for screening purposes, precise diagnosis, and treatment follow-up. This article provides an up-to-date overview of the biomarkers associated with the six main heart failure etiology pathways. Plasma natriuretic peptides (BNP and NT-proBNP) and cardiac troponins (cTnT, cTnl) are still analyzed as gold-standard markers for heart failure. Other complementary biomarkers include growth differentiation factor 15 (GDF-15), circulating Galactose Lectin 3 (Gal-3), soluble interleukin (sST2), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). For these biomarkers, the electrochemical biosensors have exhibited sufficient sensitivity, detection limit, and specificity. This review systematically summarizes the latest molecular biomarkers and sensors for heart failure, which will provide comprehensive and cutting-edge authoritative scientific information for biomedical and electronic-sensing researchers in the field of heart failure, as well as patients. In addition, our proposed future outlook may provide new research ideas for researchers.
Collapse
Affiliation(s)
- Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, P.O. Box 235, Kongsberg, 3603, Norway
| | - Wangang Zhu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Bilal MI, Gajjar R, Bobba A, Zabel KM, Davis MG, Nasrullah A, Gangu K, Sheikh AB, Yadav N. Assessing 30-day readmissions and outcomes in acute heart failure patients with concurrent COVID-19: A nationwide study during the 2020 pandemic. Curr Probl Cardiol 2024; 49:102246. [PMID: 38048854 DOI: 10.1016/j.cpcardiol.2023.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Acute heart failure (HF) is a significant cause of readmission and mortality, particularly within 30 days post-discharge. The interplay between COVID-19 and HF is still being studied. METHODS This retrospective study utilized The National Readmission Database to examine outcomes and predictors among patients with COVID-19 and concomitant acute HF between January 1, 2020, and November 31, 2020. 53,336 index hospitalizations and 8,158 readmissions were included. The primary outcome was the 30-day all-cause readmission rate. Predictor variables included patient demographics, medical comorbidities and discharge disposition. RESULTS The primary outcome was 21.2 %. COVID-19 infection was the most predominant all-cause reason for acute HF readmission (24.7 %). Hypertensive heart disease with chronic kidney disease was the most prevalent cardiac cause (7.7 %). Mortality rate during index hospitalization was significantly higher compared to readmission. CONCLUSIONS The highlighted prevalent complications, comorbidities, and demographics driving readmissions offer valuable insights to improve outcomes in this population.
Collapse
Affiliation(s)
| | - Rohan Gajjar
- Department of Internal Medicine, John Hopkins Stronger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Aniesh Bobba
- Department of Cardiology, John Hopkins Stronger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Kenneth M Zabel
- Department of Internal Medicine, University of New Mexico Health System, Albuquerque, NM, USA
| | - Monique G Davis
- Department of Internal Medicine, University of New Mexico Health System, Albuquerque, NM, USA
| | - Adeel Nasrullah
- Department of Pulmonology and Critical Care, Allegheny Health Network, Pittsburg PA, USA
| | - Karthik Gangu
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abu Baker Sheikh
- Department of Internal Medicine, University of New Mexico Health System, 1 University of New Mexico, Albuquerque, NM, 87131, MSC10-55501, NM, USA.
| | - Neha Yadav
- Department of Cardiology, John Hopkins Stronger, Jr. Hospital of Cook County, Chicago, IL, USA
| |
Collapse
|
4
|
Liu J, Wu S, Zhang Y, Wang C, Liu S, Wan J, Yang L. SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:249. [PMID: 37705046 PMCID: PMC10500938 DOI: 10.1186/s13287-023-03485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Cardiovascular complications significantly augment the overall COVID-19 mortality, largely due to the susceptibility of human cardiomyocytes (CMs) to SARS-CoV-2 virus. SARS-CoV-2 virus encodes 27 genes, whose specific impacts on CM health are not fully understood. This study elucidates the deleterious effects of SARS-CoV-2 genes Nsp6, M, and Nsp8 on human CMs. METHODS CMs were derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, using 2D and 3D differentiation methods. We overexpressed Nsp6, M, or Nsp8 in hPSCs and then applied whole mRNA-seq and mass spectrometry for multi-omics analysis. Co-immunoprecipitation mass spectrometry was utilized to map the protein interaction networks of Nsp6, M, and Nsp8 within host hiPSC-CMs. RESULTS Nsp6, Nsp8, and M globally perturb the transcriptome and proteome of hPSC-CMs. SARS-CoV-2 infection and the overexpression of Nsp6, Nsp8, or M coherently upregulated genes associated with apoptosis and immune/inflammation pathways, whereas downregulated genes linked to heart contraction and functions. Global interactome analysis revealed interactions between Nsp6, Nsp8, and M with ATPase subunits. Overexpression of Nsp6, Nsp8, or M significantly reduced cellular ATP levels, markedly increased apoptosis, and compromised Ca2+ handling in hPSC-CMs. Importantly, administration of FDA-approved drugs, ivermectin and meclizine, could restore ATP levels, thereby mitigating apoptosis and dysfunction in hPSC-CMs overexpressing Nsp6, Nsp8, or M. CONCLUSION Overall, our findings uncover the extensive damaging effects of Nsp6, Nsp8, and M on hPSC-CMs, underlining the crucial role of ATP homeostasis in CM death and functional abnormalities induced by these SARS-CoV-2 genes, and reveal the potential therapeutic strategies to alleviate these detrimental effects with FDA-approved drugs.
Collapse
Affiliation(s)
- Juli Liu
- Department of Pediatrics, Indiana University School of Medicine, Herman B Wells Center for Pediatric Research, Indianapolis, IN, 46202, USA.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Shiyong Wu
- Department of Pediatrics, Indiana University School of Medicine, Herman B Wells Center for Pediatric Research, Indianapolis, IN, 46202, USA
| | - Yucheng Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cheng Wang
- Department of Pediatrics, Indiana University School of Medicine, Herman B Wells Center for Pediatric Research, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Herman B Wells Center for Pediatric Research, Indianapolis, IN, 46202, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Spannella F, Giulietti F, Laureti G, Di Rosa M, Di Pentima C, Allevi M, Garbuglia C, Giordano P, Landolfo M, Ferrara L, Fumagalli A, Lattanzio F, Bonfigli AR, Sarzani R. Role of Cardio-Renal Dysfunction, Inflammation Markers, and Frailty on In-Hospital Mortality in Older COVID-19 Patients: A Cluster Analysis. Biomedicines 2023; 11:2473. [PMID: 37760914 PMCID: PMC10525261 DOI: 10.3390/biomedicines11092473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Our study aimed to identify clusters of hospitalized older COVID-19 patients according to their main comorbidities and routine laboratory parameters to evaluate their association with in-hospital mortality. We performed an observational study on 485 hospitalized older COVID-19 adults (aged 80+ years). Patients were aggregated in clusters by a K-medians cluster analysis. The primary outcome was in-hospital mortality. Medical history and laboratory parameters were collected on admission. Frailty, defined by the Clinical Frailty Scale (CFS), referred to the two weeks before hospitalization and was used as a covariate. The median age was 87 (83-91) years, with a female prevalence (59.2%). Three different clusters were identified: cluster 1 (337), cluster 2 (118), and cluster 3 (30). In-hospital mortality was 28.5%, increasing from cluster 1 to cluster 3: cluster 1 = 21.1%, cluster 2 = 40.7%, and cluster 3 = 63.3% (p < 0.001). The risk for in-hospital mortality was higher in clusters 2 [HR 1.96 (95% CI: 1.28-3.01)] and 3 [HR 2.87 (95% CI: 1.62-5.07)] compared to cluster 1, even after adjusting for age, sex, and frailty. Patients in cluster 3 were older and had a higher prevalence of atrial fibrillation, higher admission NT-proBNP and C-reactive protein levels, higher prevalence of concurrent bacterial infections, and lower estimated glomerular filtration rates. The addition of CFS significantly improved the predictive ability of the clusters for in-hospital mortality. Our cluster analysis on older COVID-19 patients provides a characterization of those subjects at higher risk for in-hospital mortality, highlighting the role played by cardio-renal impairment, higher inflammation markers, and frailty, often simultaneously present in the same patient.
Collapse
Affiliation(s)
- Francesco Spannella
- Internal Medicine and Geriatrics, IRCCS INRCA, 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, “Politecnica delle Marche” University, 60126 Ancona, Italy
| | | | - Giorgia Laureti
- Internal Medicine and Geriatrics, IRCCS INRCA, 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, “Politecnica delle Marche” University, 60126 Ancona, Italy
| | - Mirko Di Rosa
- Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, 60127 Ancona, Italy
| | | | - Massimiliano Allevi
- Internal Medicine and Geriatrics, IRCCS INRCA, 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, “Politecnica delle Marche” University, 60126 Ancona, Italy
| | - Caterina Garbuglia
- Internal Medicine and Geriatrics, IRCCS INRCA, 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, “Politecnica delle Marche” University, 60126 Ancona, Italy
| | - Piero Giordano
- Internal Medicine and Geriatrics, IRCCS INRCA, 60127 Ancona, Italy
| | - Matteo Landolfo
- Internal Medicine and Geriatrics, IRCCS INRCA, 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, “Politecnica delle Marche” University, 60126 Ancona, Italy
| | - Letizia Ferrara
- Medical Direction, Risk Manager, IRCCS INRCA, 60127 Ancona, Italy
| | | | | | | | - Riccardo Sarzani
- Internal Medicine and Geriatrics, IRCCS INRCA, 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, “Politecnica delle Marche” University, 60126 Ancona, Italy
| |
Collapse
|