1
|
Sonkodi B. Delayed-Onset Muscle Soreness Begins with a Transient Neural Switch. Int J Mol Sci 2025; 26:2319. [PMID: 40076941 PMCID: PMC11901069 DOI: 10.3390/ijms26052319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Unaccustomed and/or strenuous eccentric contractions are known to cause delayed-onset muscle soreness. In spite of this fact, their exact cause and mechanism have been unknown for more than 120 years. The exploration of the diverse functionality of the Piezo2 ion channel, as the principal proprioceptive component, and its autonomously acquired channelopathy may bring light to this apparently simple but mysterious pain condition. Correspondingly, the neurocentric non-contact acute compression axonopathy theory of delayed-onset muscle soreness suggests two damage phases affecting two muscle compartments, including the intrafusal (within the muscle spindle) and the extrafusal (outside the muscle spindle) ones. The secondary damage phase in the extrafusal muscle space is relatively well explored. However, the suggested primary damage phase within the muscle spindle is far from being entirely known. The current manuscript describes how the proposed autonomously acquired Piezo2 channelopathy-induced primary damage could be the initiating transient neural switch in the unfolding of delayed-onset muscle soreness. This primary damage results in a transient proprioceptive neural switch and in a switch from quantum mechanical free energy-stimulated ultrafast proton-coupled signaling to rapid glutamate-based signaling along the muscle-brain axis. In addition, it induces a transient metabolic switch or, even more importantly, an energy generation switch in Type Ia proprioceptive terminals that eventually leads to a transient glutaminolysis deficit and mitochondrial deficiency, not to mention a force generation switch. In summary, the primary damage or switch is likely an inward unidirectional proton pathway reversal between Piezo2 and its auxiliary ligands, leading to acquired Piezo2 channelopathy.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary;
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
2
|
Wang Y, Jiang T. Recent research advances in pain mechanisms in McCune-Albright syndrome thinking about the pain mechanism of FD/MAS. J Orthop Surg Res 2024; 19:196. [PMID: 38515135 PMCID: PMC10956191 DOI: 10.1186/s13018-024-04687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND The lack of effective understanding of the pain mechanism of McCune-Albright syndrome (MAS) has made the treatment of pain in this disease a difficult clinical challenge, and new therapeutic targets are urgently needed to address this dilemma. OBJECTIVE This paper summarizes the novel mechanisms, targets, and treatments that may produce pain in MAS and fibrous dysplasia (polyfibrous dysplasia, or FD). METHODS We conducted a systematic search in the PubMed database, Web of Science, China Knowledge Network (CNKI) with the following keywords: "McCune-Albright syndrome (MAS); polyfibrous dysplasia (FD); bone pain; bone remodeling; G protein coupled receptors; GDNF family receptors; purinergic receptors and glycogen synthase kinase", as well as other keywords were systematically searched. Papers published between January 2018 and May 2023 were selected for finding. Initial screening was performed by reading the titles and abstracts, and available literature was screened against the inclusion and exclusion criteria. RESULTS In this review, we systematically analyzed the cutting-edge advances in this disease, synthesized the findings, and discussed the differences. With regard to the complete mechanistic understanding of the pain condition in FD/MAS, in particular, we collated new findings on new pathways, neurotrophic factor receptors, purinergic receptors, interferon-stimulating factors, potassium channels, protein kinases, and corresponding hormonal modulation and their respective strengths and weaknesses. CONCLUSION This paper focuses on basic research to explore FD/MAS pain mechanisms. New nonneuronal and molecular mechanisms, mechanically loaded responsive neurons, and new targets for potential clinical interventions are future research directions, and a large number of animal experiments, tissue engineering techniques, and clinical trials are still needed to verify the effectiveness of the targets in the future.
Collapse
Affiliation(s)
- Yong Wang
- Orthopedics Department, Changzhou Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Changzhou, 213000, Jangsu Province, China
| | - Tao Jiang
- Orthopedics Department, Changzhou Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Changzhou, 213000, Jangsu Province, China.
| |
Collapse
|
3
|
Sonkodi B. Progressive Irreversible Proprioceptive Piezo2 Channelopathy-Induced Lost Forced Peripheral Oscillatory Synchronization to the Hippocampal Oscillator May Explain the Onset of Amyotrophic Lateral Sclerosis Pathomechanism. Cells 2024; 13:492. [PMID: 38534336 PMCID: PMC10969524 DOI: 10.3390/cells13060492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a mysterious lethal multisystem neurodegenerative disease that gradually leads to the progressive loss of motor neurons. A recent non-contact dying-back injury mechanism theory for ALS proposed that the primary damage is an acquired irreversible intrafusal proprioceptive terminal Piezo2 channelopathy with underlying genetic and environmental risk factors. Underpinning this is the theory that excessively prolonged proprioceptive mechanotransduction under allostasis may induce dysfunctionality in mitochondria, leading to Piezo2 channelopathy. This microinjury is suggested to provide one gateway from physiology to pathophysiology. The chronic, but not irreversible, form of this Piezo2 channelopathy is implicated in many diseases with unknown etiology. Dry eye disease is one of them where replenishing synthetic proteoglycans promote nerve regeneration. Syndecans, especially syndecan-3, are proposed as the first critical link in this hierarchical ordered depletory pathomechanism as proton-collecting/distributing antennas; hence, they may play a role in ALS pathomechanism onset. Even more importantly, the shedding or charge-altering variants of Syndecan-3 may contribute to the Piezo2 channelopathy-induced disruption of the Piezo2-initiated proton-based ultrafast long-range signaling through VGLUT1 and VGLUT2. Thus, these alterations may not only cause disruption to ultrafast signaling to the hippocampus in conscious proprioception, but could disrupt the ultrafast proprioceptive signaling feedback to the motoneurons. Correspondingly, an inert Piezo2-initiated proton-based ultrafast signaled proprioceptive skeletal system is coming to light that is suggested to be progressively lost in ALS. In addition, the lost functional link of the MyoD family of inhibitor proteins, as auxiliary subunits of Piezo2, may not only contribute to the theorized acquired Piezo2 channelopathy, but may explain how these microinjured ion channels evolve to be principal transcription activators.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary;
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
4
|
Stringer RN, Weiss N. Pathophysiology of ion channels in amyotrophic lateral sclerosis. Mol Brain 2023; 16:82. [PMID: 38102715 PMCID: PMC10722804 DOI: 10.1186/s13041-023-01070-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as the most prevalent and severe form of motor neuron disease, affecting an estimated 2 in 100,000 individuals worldwide. It is characterized by the progressive loss of cortical, brainstem, and spinal motor neurons, ultimately resulting in muscle weakness and death. Although the etiology of ALS remains poorly understood in most cases, the remodelling of ion channels and alteration in neuronal excitability represent a hallmark of the disease, manifesting not only during the symptomatic period but also in the early pre-symptomatic stages. In this review, we delve into these alterations observed in ALS patients and preclinical disease models, and explore their consequences on neuronal activities. Furthermore, we discuss the potential of ion channels as therapeutic targets in the context of ALS.
Collapse
Affiliation(s)
- Robin N Stringer
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
5
|
Sonkodi B, Radovits T, Csulak E, Kopper B, Sydó N, Merkely B. Orthostasis Is Impaired Due to Fatiguing Intensive Acute Concentric Exercise Succeeded by Isometric Weight-Loaded Wall-Sit in Delayed-Onset Muscle Soreness: A Pilot Study. Sports (Basel) 2023; 11:209. [PMID: 37999426 PMCID: PMC10675158 DOI: 10.3390/sports11110209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The aim of the study was to investigate any indication of diminished orthostatic tolerance as a result of fatiguing intensive acute concentric exercise with a successive isometric wall-sit followed by an orthostatic stress test, with a special focus on any distinguishable alterations due to a delayed-onset muscle soreness effect. The exercise protocol was carried out among nineteen (10 female, 9 male) junior swimmers from the Hungarian National Swim Team. All athletes showed a positive orthostatic stress test right after our exercise protocol. The diastolic blood pressure was significantly lower due to the delayed-onset muscle soreness effect in the standing position after the supine position of the orthostatic stress test, in contrast to the athletes who did not experience delayed-onset muscle soreness. Furthermore, the heart rate was dysregulated in athletes with a delayed-onset muscle soreness effect when they assumed a supine position after the sustained standing position during the orthostatic stress test, in contrast to the athletes without delayed-onset muscle soreness. Interesting to note is that, in three subjects, the sustained standing position decreased the heart rate below the level of the initial supine position and six athletes experienced dizziness in the standing position, and all of these athletes were from the group that experienced delayed-onset muscle soreness. Accordingly, this study, for the first time, demonstrated that delayed-onset muscle soreness impairs orthostasis after unaccustomed fatiguing intensive acute concentric exercise with a successive isometric weight-loaded wall-sit; however, validation of this association should be investigated in a larger sample size.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Emese Csulak
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Nóra Sydó
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
6
|
Sonkodi B, Marsovszky L, Csorba A, Balog A, Kopper B, Keller-Pintér A, Nagy ZZ, Resch MD. Disrupted Neural Regeneration in Dry Eye Secondary to Ankylosing Spondylitis-With a Theoretical Link between Piezo2 Channelopathy and Gateway Reflex, WDR Neurons, and Flare-Ups. Int J Mol Sci 2023; 24:15455. [PMID: 37895134 PMCID: PMC10607705 DOI: 10.3390/ijms242015455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed at analyzing the corneal neural regeneration in ankylosing spondylitis patients using in vivo corneal confocal microscopy in correlation with Langerhans cell density, morphology, and dry eye parameters. Approximately 24 ankylosing spondylitis subjects and 35 age- and gender-matched control subjects were enrolled. Data analysis showed that all corneal nerve-fiber descriptives were lower in the ankylosing spondylitis group, implicating disrupted neural regeneration. Peripheral Langerhans cell density showed a negative correlation with nerve fiber descriptions. A negative correlation between tear film break-up time and corneal nerve fiber total branch density was detected. The potential role of somatosensory terminal Piezo2 channelopathy in the pathogenesis of dry eye disease and ankylosing spondylitis is highlighted in our study, exposing the neuroimmunological link between these diseases. We hypothesized earlier that spinal neuroimmune-induced sensitization due to this somatosensory terminal primary damage could lead to Langerhans cell activation in the cornea, in association with downregulated Piezo1 channels on these cells. This activation could lead to a Th17/Treg imbalance in dry eye secondary to ankylosing spondylitis. Hence, the corneal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could explain the disrupted neural regeneration. Moreover, the translation of our findings highlights the link between Piezo2 channelopathy-induced gateway to pathophysiology and the gateway reflex, not to mention the potential role of spinal wide dynamic range neurons in the evolution of neuropathic pain and the flare-ups in ankylosing spondylitis and dry eye disease.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - László Marsovszky
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| | - Anita Csorba
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| | - Attila Balog
- Department of Rheumatology and Immunology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| | - Miklós D. Resch
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.M.)
| |
Collapse
|
7
|
Sonkodi B, Csorba A, Marsovszky L, Balog A, Kopper B, Nagy ZZ, Resch MD. Evidence of Disruption in Neural Regeneration in Dry Eye Secondary to Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24087514. [PMID: 37108693 PMCID: PMC10140938 DOI: 10.3390/ijms24087514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The purpose of our study was to analyze abnormal neural regeneration activity in the cornea through means of confocal microscopy in rheumatoid arthritis patients with concomitant dry eye disease. We examined 40 rheumatoid arthritis patients with variable severity and 44 volunteer age- and gender-matched healthy control subjects. We found that all examined parameters were significantly lower (p < 0.05) in rheumatoid arthritis patients as opposed to the control samples: namely, the number of fibers, the total length of the nerves, the number of branch points on the main fibers and the total nerve-fiber area. We examined further variables, such as age, sex and the duration of rheumatoid arthritis. Interestingly, we could not find a correlation between the above variables and abnormal neural structural changes in the cornea. We interpreted these findings via implementing our hypotheses. Correspondingly, one neuroimmunological link between dry eye and rheumatoid arthritis could be through the chronic Piezo2 channelopathy-induced K2P-TASK1 signaling axis. This could accelerate neuroimmune-induced sensitization on the spinal level in this autoimmune disease, with Langerhans-cell activation in the cornea and theorized downregulated Piezo1 channels in these cells. Even more importantly, suggested principal primary-damage-associated corneal keratocyte activation could be accompanied by upregulation of Piezo1. Both activation processes on the periphery would skew the plasticity of the Th17/Treg ratio, resulting in Th17/Treg imbalance in dry eye, secondary to rheumatoid arthritis. Hence, chronic somatosensory-terminal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could result in a mixed picture of disrupted functional regeneration but upregulated morphological regeneration activity of these somatosensory axons in the cornea, providing the demonstrated abnormal neural corneal morphology.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Anita Csorba
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - László Marsovszky
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, 6725 Szeged, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Miklós D Resch
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
8
|
Sonkodi B. LF Power of HRV Could Be the Piezo2 Activity Level in Baroreceptors with Some Piezo1 Residual Activity Contribution. Int J Mol Sci 2023; 24:ijms24087038. [PMID: 37108199 PMCID: PMC10138994 DOI: 10.3390/ijms24087038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Heart rate variability is a useful measure for monitoring the autonomic nervous system. Heart rate variability measurements have gained significant demand not only in science, but also in the public due to the fairly low price and wide accessibility of the Internet of things. The scientific debate about one of the measures of heart rate variability, i.e., what low-frequency power is reflecting, has been ongoing for decades. Some schools reason that it represents the sympathetic loading, while an even more compelling reasoning is that it measures how the baroreflex modulates the cardiac autonomic outflow. However, the current opinion manuscript proposes that the discovery of the more precise molecular characteristics of baroreceptors, i.e., that the Piezo2 ion channel containing vagal afferents could invoke the baroreflex, may possibly resolve this debate. It is long known that medium- to high-intensity exercise diminishes low-frequency power to almost undetectable values. Moreover, it is also demonstrated that the stretch- and force-gated Piezo2 ion channels are inactivated in a prolonged hyperexcited state in order to prevent pathological hyperexcitation. Accordingly, the current author suggests that the almost undetectable value of low-frequency power at medium- to high-intensity exercise reflects the inactivation of Piezo2 from vagal afferents in the baroreceptors with some Piezo1 residual activity contribution. Consequently, this opinion paper highlights how low-frequency power of the heart rate variability could represent the activity level of Piezo2 in baroreceptors.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| |
Collapse
|