1
|
Romanos GE, Mistretta L, Newman A, Ohana D, Delgado-Ruiz RA. Implant Surface Decontamination Methods That Can Impact Implant Wettability. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6249. [PMID: 39769848 PMCID: PMC11678801 DOI: 10.3390/ma17246249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
This review addresses the effects of various decontamination methods on the wettability of titanium and zirconia dental implants. Despite extensive research on surface wettability, there is still a significant gap in understanding how different decontamination techniques impact the inherent wettability of these surfaces. Although the literature presents inconsistent findings on the efficacy of decontamination methods such as lasers, air-polishing, UV light, and chemical treatments, the reviewed studies suggest that decontamination alters in vitro hydrophilicity. Post-decontamination surface chemistry must be carefully considered when selecting optimal surface treatments for implant materials. Further in vitro investigations are essential to determine which approaches best enhance surface wettability, potentially leading to improved implant-tissue interactions in clinical settings.
Collapse
Affiliation(s)
- Georgios E. Romanos
- Laboratory of Periodontal-, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA; (L.M.); (A.N.); (D.O.)
| | - Lauren Mistretta
- Laboratory of Periodontal-, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA; (L.M.); (A.N.); (D.O.)
| | - Allyson Newman
- Laboratory of Periodontal-, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA; (L.M.); (A.N.); (D.O.)
| | - Danielle Ohana
- Laboratory of Periodontal-, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA; (L.M.); (A.N.); (D.O.)
| | - Rafael A. Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
2
|
Priyadharsana PS, Dubey V, Kaur P, Nagar P, Chethan J, Priyanka BB. Evaluation of Antimicrobial Agents, Irrigation Solutions, and Surface Disinfection Techniques for Preventing Bacterial Contamination and Biofilm Formation on Implant Surfaces In Vitro. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S3631-S3633. [PMID: 39926921 PMCID: PMC11805043 DOI: 10.4103/jpbs.jpbs_1144_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 02/11/2025] Open
Abstract
Background Peri-implant diseases, driven by bacterial biofilms, threaten long-term implant success. This study evaluated various antimicrobial agents for preventing bacterial contamination and biofilm formation on implant surfaces. Methods Ultraviolet radiation type C (UV-C) light, povidone-iodine (PVP-I), chlorhexidine (CHX), and hydrogen peroxide (H2O2) were tested against bacterial cultures. Log reduction values quantified bacterial population decrease. Biofilm formation was assessed using crystal violet staining and optical density at 570 (OD570) measurements. Results UV-C and PVP-I showed the highest log reductions (3.7067, 3.6200), followed by CHX (2.9467) and H2O2 (2.3800). UV-C and PVP-I most effectively inhibited biofilm formation (OD570: 0.0600, 0.0800), followed by CHX (0.1200) and H2O2 (0.1767). Conclusion UV-C and PVP-I demonstrated superior efficacy in reducing bacterial load and inhibiting biofilm formation, suggesting potential as valuable tools for preventing and managing peri-implant infections.
Collapse
Affiliation(s)
- PS Priyadharsana
- Department of Oral and Maxillofacial Surgery, RVS Dental College and Hospital, Tiruppur, Tamil Nadu, India
| | - Vertika Dubey
- Department of Dentistry, LN Medical College and Research Centre, Bhopal, Madhya Pradesh, India
| | - Prabhleen Kaur
- Masters in Dental Public Health (UCL), Private Practitioner, Mumbai, India
| | - Priya Nagar
- Department of Prosthodontics, PGIDS Rohtak, Rohtak, Haryana, India
| | - J Chethan
- Department of Public Health Dentistry, Subbaiah Dental College and Hospital, Shimoga, Karnataka, India
| | - BB Priyanka
- Department of Conservative and Endodontics, Sharavathi Dental College and Hospital, Shimoga, Karnataka, India
| |
Collapse
|
3
|
Kang K, Bacci S. Photodynamic Therapy 2.0. Biomedicines 2024; 12:2425. [PMID: 39594992 PMCID: PMC11591911 DOI: 10.3390/biomedicines12112425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
In 1903, Von Tappeiner and Jesionek [...].
Collapse
Affiliation(s)
- Kyungsu Kang
- Center for Natural Product Systems Biology, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Republic of Korea;
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung 25451, Gangwon-do, Republic of Korea
| | - Stefano Bacci
- Research Unit of Histology and Embryology, Department of Biology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
4
|
Dumitrel SI, Matichescu A, Dinu S, Buzatu R, Popovici R, Dinu DC, Bratu DC. New Insights Regarding the Use of Relevant Synthetic Compounds in Dentistry. Molecules 2024; 29:3802. [PMID: 39202881 PMCID: PMC11357206 DOI: 10.3390/molecules29163802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Worldwide, synthetic compounds are used for both in-office and at-home dental care. They are a valuable resource for both prophylactic and curative treatments for various dental problems, such as tooth decay, periodontal diseases, and many more. They are typically preferred due to their broad range of actions and ability to produce targeted, rapid, and long-lasting effects. Using a 0.12% chlorhexidine mouthwash is capable of reducing the plaque index from 47.69% to 2.37% and the bleeding index from 32.93% to 6.28% after just 2 weeks. Mouthwash with 0.1% OCT is also highly effective, as it significantly lowered the median plaque index and salivary bacterial counts in 152 patients in 5 days compared to a control group (p < 0.0001), while also reducing the gingival index (p < 0.001). When povidone-iodine was used as an irrigant during the surgical removal of mandibular third molars in 105 patients, it resulted in notably lower pain scores after 2 days compared to a control group (4.57 ± 0.60 vs. 5.71 ± 0.45). Sodium hypochlorite is excellent for root canal disinfection, as irrigating with 1% NaOCl completely eliminated the bacteria from canals in 65% patients. A 0.05% CPC mouthwash proved effective for perioperative patient care, significantly decreasing gingival bleeding (p < 0.001) and suppressing Streptococcus levels even one week post-surgery. Lastly, a 6% H2O2 paint-on varnish and 6% H2O2 tray formulations successfully bleached the teeth of 40 patients, maintaining a noticeably whiter appearance up to the 6-month follow-up, with significant color differences from the baseline (p < 0.005). Synthetic compounds have a large research base, which also provides a greater awareness of their mechanism of action and potential adverse effects. For a better understanding of how they work, several methods and assays are performed. These are protocolary techniques through which a compound's efficacy and toxicity are established.
Collapse
Affiliation(s)
- Stefania-Irina Dumitrel
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Anamaria Matichescu
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 14A Tudor Vladimirescu Ave., 300173 Timisoara, Romania
- Translational and Experimental Clinical Research Centre in Oral Health, Victor Babes University of Medicine and Pharmacy, 14A Tudor Vladimirescu Ave., 300173 Timisoara, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| | - Ramona Popovici
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| | - Dorin Cristian Dinu
- Family Dental Clinic, Private Practice, 24 Budapesta Street, 307160 Dumbravita, Romania;
| | - Dana Cristina Bratu
- Department of Orthodontics II, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| |
Collapse
|
5
|
Ahrens M, Spörer M, Deppe H, Ritschl LM, Mela P. Bacterial reduction and temperature increase of titanium dental implant models treated with a 445 nm diode laser: an in vitro study. Sci Rep 2024; 14:18053. [PMID: 39103382 PMCID: PMC11300767 DOI: 10.1038/s41598-024-68780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
In this in vitro study, the use of a 445 nm diode laser was investigated for the decontamination of titanium dental implants. Different irradiation protocols and the effect of repetitive laser irradiation on temperature increase and decontamination efficacy were evaluated on titanium implant models. An automated setup was developed to realize a scanning procedure for a full surface irradiation to recapitulate a clinical treatment. Three irradiation parameter sets A (continuous wave, power 0.8 W, duty cycle (DC) 100%, and 5 s), B (pulsed mode, DC 50%, power 1.0 W, and 10 s), and C (pulsed mode, DC 10%, power 3.0 W, and 20 s) were used to treat the rods for up to ten consecutive scans. The resulting temperature increase was measured by a thermal imaging camera and the decontamination efficacy of the procedures was evaluated against Escherichia coli and Staphylococcus aureus, and correlated with the applied laser fluence. An implant's temperature increase of 10 °C was set as the limit accepted in literature to avoid thermal damage to the surrounding tissue in vivo. Repeated irradiation of the specimens resulted in a steady increase in temperature. Parameter sets A and B caused a temperature increase of 11.27 ± 0.81 °C and 9.90 ± 0.37 °C after five consecutive laser scans, respectively, while parameter set C resulted in a temperature increase of only 8.20 ± 0.53 °C after ten surface scans. The microbiological study showed that all irradiation parameter sets achieved a complete bacterial reduction (99.9999% or 6-log10) after ten consecutive scans, however only parameter set C did not exceed the temperature threshold. A 445 nm diode laser can be used to decontaminate dental titanium rods, and repeated laser irradiation of the contaminated areas increases the antimicrobial effect of the treatment; however, the correct choice of parameters is needed to provide adequate laser fluence while preventing an implant's temperature increase that could cause damage to the surrounding tissue.
Collapse
Affiliation(s)
- Markus Ahrens
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany
| | - Melanie Spörer
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany
| | - Herbert Deppe
- Department of Oral and Maxillofacial Surgery, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Lucas M Ritschl
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany
- Department of Oral and Maxillofacial Surgery, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Afrasiabi S, Benedicenti S, Signore A, Arshad M, Chiniforush N. Simultaneous Dual-Wavelength Laser Irradiation against Implant-Adherent Biofilms of Staphylococcus aureus, Escherichia coli, and Candida albicans for Improved Antimicrobial Photodynamic Therapy. Bioengineering (Basel) 2024; 11:48. [PMID: 38247925 PMCID: PMC10813184 DOI: 10.3390/bioengineering11010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
The efficiency of antimicrobial photodynamic therapy (PDT) might be improved by using multiple wavelengths. This study investigates the sensitivity of implant-adherent biofilms of Staphylococcus aureus, Escherichia coli, and Candida albicans to indocyanine green (ICG)-808 nm diode laser, toluidine blue O (TBO)-635 nm diode laser, and hydrogen peroxide (HP)-980 nm diode laser and their combination when irradiated with dual-wavelength laser irradiation (simultaneously 980-635 nm or 980-808 nm). After an incubation period of 72 h, the infected implants were randomly divided into seven different treatment modalities: Control, HP, HP-PDT, TBO-PDT, HP-TBO-PDT, ICG-PDT, and HP-ICG-PDT. After the treatments, the colony-forming units (CFUs)/mL and reactive oxygen species (ROS) generation were determined. All evaluated disinfection methods were significantly effective against the three investigated bacteria compared to the control. The combined treatment of HP-ICG-PDT or HP-TBO-PDT had the greatest antibacterial effect compared to each treatment alone. There were statistical differences between HP-ICG-PDT and ICG-PDT or HP-TBO-PDT and TBO-PDT for all three bacteria studied. PDT with simultaneous dual-wavelength laser irradiation is an efficient strategy to improve the therapeutic effect of PDT.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1441987566, Iran;
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy;
| | - Antonio Signore
- Therapeutic Dentistry Department, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8, b. 2, 119992 Moscow, Russia;
| | - Mahnaz Arshad
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1441987566, Iran;
- Department of Prosthodontics, School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran 1441987566, Iran
| | - Nasim Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy;
| |
Collapse
|