1
|
Hoseini ZS, Zeinalilathori S, Fathi-karkan S, Zeinali S, Rahdar A, Siddiqui B, Kharaba Z, Pandey S. Cell-targeting nanomedicine for bladder cancer: A cellular bioengineering approach for precise drug delivery. J Drug Deliv Sci Technol 2024; 101:106220. [DOI: 10.1016/j.jddst.2024.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Dalle Carbonare L, Minoia A, Vareschi A, Piritore FC, Zouari S, Gandini A, Meneghel M, Elia R, Lorenzi P, Antoniazzi F, Pessoa J, Zipeto D, Romanelli MG, Guardavaccaro D, Valenti MT. Exploring the Interplay of RUNX2 and CXCR4 in Melanoma Progression. Cells 2024; 13:408. [PMID: 38474372 PMCID: PMC10930675 DOI: 10.3390/cells13050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Overexpression of the Runt-related transcription factor 2 (RUNX2) has been reported in several cancer types, and the C-X-C motif chemokine receptor 4 (CXCR4) has an important role in tumour progression. However, the interplay between CXCR4 and RUNX2 in melanoma cells remains poorly understood. In the present study, we used melanoma cells and a RUNX2 knockout (RUNX2-KO) in vitro model to assess the influence of RUNX2 on CXCR4 protein levels along with its effects on markers associated with cell invasion and autophagy. Osteotropism was assessed using a 3D microfluidic model. Moreover, we assessed the impact of CXCR4 on the cellular levels of key cellular signalling proteins involved in autophagy. We observed that melanoma cells express both RUNX2 and CXCR4. Restored RUNX2 expression in RUNX2 KO cells increased the expression levels of CXCR4 and proteins associated with the metastatic process. The protein markers of autophagy LC3 and beclin were upregulated in response to increased CXCR4 levels. The CXCR4 inhibitor WZ811 reduced osteotropism and activated the mTOR and p70-S6 cell signalling proteins. Our data indicate that the RUNX2 transcription factor promotes the expression of the CXCR4 chemokine receptor on melanoma cells, which in turn promotes autophagy, cell invasiveness, and osteotropism, through the inhibition of the mTOR signalling pathway. Our data suggest that RUNX2 promotes melanoma progression by upregulating CXCR4, and we identify the latter as a key player in melanoma-related osteotropism.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Arianna Minoia
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Anna Vareschi
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Francesca Cristiana Piritore
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Sharazed Zouari
- Department of Engineering for Innovative Medicine, University of Verona, 37134 Verona, Italy; (L.D.C.); (A.M.); (A.V.); (S.Z.)
| | - Alberto Gandini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy; (A.G.); (F.A.)
| | - Mirko Meneghel
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Rossella Elia
- Department of Medicine, University of Verona, 37134 Verona, Italy;
| | - Pamela Lorenzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37134 Verona, Italy; (A.G.); (F.A.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| | | | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (F.C.P.); (M.M.); (P.L.); (D.Z.); (M.G.R.)
| |
Collapse
|
3
|
Sipos F, Műzes G. Sirtuins Affect Cancer Stem Cells via Epigenetic Regulation of Autophagy. Biomedicines 2024; 12:386. [PMID: 38397988 PMCID: PMC10886574 DOI: 10.3390/biomedicines12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) are stress-responsive proteins that regulate several post-translational modifications, partly by acetylation, deacetylation, and affecting DNA methylation. As a result, they significantly regulate several cellular processes. In essence, they prolong lifespan and control the occurrence of spontaneous tumor growth. Members of the SIRT family have the ability to govern embryonic, hematopoietic, and other adult stem cells in certain tissues and cell types in distinct ways. Likewise, they can have both pro-tumor and anti-tumor effects on cancer stem cells, contingent upon the specific tissue from which they originate. The impact of autophagy on cancer stem cells, which varies depending on the specific circumstances, is a very intricate phenomenon that has significant significance for clinical and therapeutic purposes. SIRTs exert an impact on the autophagy process, whereas autophagy reciprocally affects the activity of certain SIRTs. The mechanism behind this connection in cancer stem cells remains poorly understood. This review presents the latest findings that position SIRTs at the point where cancer cells and autophagy interact. Our objective is to highlight the various roles of distinct SIRTs in cancer stem cell-related functions through autophagy. This would demonstrate their significance in the genesis and recurrence of cancer and offer a more precise understanding of their treatment possibilities in relation to autophagy.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|
4
|
Mertowska P, Mertowski S, Smolak K, Kita A, Kita G, Guz K, Pasiarski M, Grywalska E. Immune Checkpoint Pathway Expression in Lymphocyte Subpopulations in Patients with Common Variable Immunodeficiency and Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5184. [PMID: 37958359 PMCID: PMC10649987 DOI: 10.3390/cancers15215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
This study aims to gain a deeper understanding of chronic lymphocytic leukemia (CLL) and common variable immunodeficiency (CVID) by studying immune cells and specific immune checkpoint signaling pathways. The analysis of the percentage of selected immune points and their ligands (PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200) on peripheral blood lymphocyte subpopulations was performed using flow cytometry, and additional analyses determining the serum concentration of the above-mentioned molecules were performed using enzyme immunoassay tests. The obtained results indicate several significant changes in the percentage of almost all tested molecules on selected subpopulations of T and B lymphocytes in both CVID and CLL patients in relation to healthy volunteers and between the disease subunits themselves. The results obtained were also supported by the analysis of the serum concentration of soluble molecules tested. By uncovering valuable insights, we hope to enhance our comprehension and management of these conditions, considering both immunodeficiencies and hematological malignancies. Understanding the role of these signaling pathways in disease development and progression may lead to the development of modern, personalized diagnostic and therapeutic strategies. Ultimately, this knowledge may enable the monitoring of the immune system in patients with CVID and CLL, paving the way for improved patient care in the future.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| | - Aleksandra Kita
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Gabriela Kita
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Katarzyna Guz
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marcin Pasiarski
- Department of Immunology, Faculty of Health Sciences, Jan Kochanowski University, 25-317 Kielce, Poland
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.)
| |
Collapse
|