1
|
Laffranchi M, Schioppa T, Sozio F, Piserà A, Tiberio L, Salvi V, Bosisio D, Musso T, Sozzani S, Del Prete A. Chemerin in immunity. J Leukoc Biol 2025; 117:qiae181. [PMID: 39228313 DOI: 10.1093/jleuko/qiae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024] Open
Abstract
Chemerin is a distant member of the cystatin protein family, initially discovered as a chemotactic factor and subsequently also reported to act as adipokine and angiogenetic factor. The biological activity of chemerin is regulated at different levels, such as gene expression, protein processing, and interaction with both signaling and nonsignaling receptors. Chemerin is mostly produced by stromal cells, such as adipocytes, fibroblasts, and epithelial and endothelial cells, and circulates in almost all human tissues as a zymogen that needs to be proteolytically activated to exert its biological functions. At the receptor level, chemerin binds a G protein-coupled 7-transmembrane domain receptor Chemerin1 (also named ChemR23 and CMKLR1), mostly expressed by innate immune cells, such as macrophages, dendritic cells, and natural killer cells, and by border cells. In addition, chemerin may bind GPR1, a weak signaling receptor, and CCRL2, a nonsignaling receptor expressed by barrier cells, such as endothelial and epithelial cells, able to regulate leukocytes' migration by multiple mechanisms. The aim of this review is to summarize the contribution of chemerin in the regulation of immune responses.
Collapse
Affiliation(s)
- Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Francesca Sozio
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Arianna Piserà
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Tiziana Musso
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| |
Collapse
|
2
|
Muscogiuri G, Barrea L, Bettini S, El Ghoch M, Katsiki N, Tolvanen L, Verde L, Colao A, Busetto L, Yumuk VD, Hassapidou M. European Association for the Study of Obesity (EASO) Position Statement on Medical Nutrition Therapy for the Management of Individuals with Overweight or Obesity and Cancer. Obes Facts 2024; 18:86-105. [PMID: 39433024 DOI: 10.1159/000542155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Obesity, a prevalent and multifactorial disease, is linked to a range of metabolic abnormalities, including insulin resistance, dyslipidemia, and chronic inflammation. These imbalances not only contribute to cardiometabolic diseases but also play a significant role in cancer pathogenesis. The rising prevalence of obesity underscores the need to investigate dietary strategies for effective weight management for individuals with overweight or obesity and cancer. This European Society for the Study of Obesity (EASO) position statement aimed to summarize current evidence on the role of obesity in cancer and to provide insights on the major nutritional interventions, including the Mediterranean diet (MedDiet), the ketogenic diet (KD), and the intermittent fasting (IF), that should be adopted to manage individuals with overweight or obesity and cancer. The MedDiet, characterized by high consumption of plant-based foods and moderate intake of olive oil, fish, and nuts, has been associated with a reduced cancer risk. The KD and the IF are emerging dietary interventions with potential benefits for weight loss and metabolic health. KD, by inducing ketosis, and IF, through periodic fasting cycles, may offer anticancer effects by modifying tumor metabolism and improving insulin sensitivity. Despite the promising results, current evidence on these dietary approaches in cancer management in individuals with overweight or obesity is limited and inconsistent, with challenges including variability in adherence and the need for personalized dietary plans.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
| | - Silvia Bettini
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Marwan El Ghoch
- Center for the Study of Metabolism, Body Composition and Lifestyle, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Niki Katsiki
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Liisa Tolvanen
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Obesity, Academic Specialist Center, Stockholm Health Care Services, Stockholm, Sweden
- ESDN Obesity of EFAD, Naarden, The Netherlands
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Annamaria Colao
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - Luca Busetto
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Volkan Demirhan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
- European Association for the Study of Obesity-Collaborating Center for Obesity Management, Istanbul, Turkey
| | - Maria Hassapidou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- ESDN Obesity of EFAD, Naarden, The Netherlands
| |
Collapse
|
3
|
Akla N, Veilleux C, Annabi B. The Chemopreventive Impact of Diet-Derived Phytochemicals on the Adipose Tissue and Breast Tumor Microenvironment Secretome. Nutr Cancer 2024; 77:9-25. [PMID: 39300732 DOI: 10.1080/01635581.2024.2401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cancer cells-derived extracellular vesicles can trigger the transformation of adipose-derived mesenchymal stem cells (ADMSC) into a pro-inflammatory, cancer-associated adipocyte (CAA) phenotype. Such secretome-mediated crosstalk between the adipose tissue and the tumor microenvironment (TME) therefore impacts tumor progression and metastatic processes. In addition, emerging roles of diet-derived phytochemicals, especially epigallocatechin-3-gallate (EGCG) among other polyphenols, in modulating exosome-mediated metabolic and inflammatory signaling pathways have been highlighted. Here, we discuss how selected diet-derived phytochemicals could alter the secretome signature as well as the crosstalk dynamics between the adipose tissue and the TME, with a focus on breast cancer. Their broader implication in the chemoprevention of obesity-related cancers is also discussed.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
4
|
De Mario A, Trevellin E, Piazza I, Vindigni V, Foletto M, Rizzuto R, Vettor R, Mammucari C. Mitochondrial Ca 2+ signaling is a hallmark of specific adipose tissue-cancer crosstalk. Sci Rep 2024; 14:8469. [PMID: 38605098 PMCID: PMC11009327 DOI: 10.1038/s41598-024-55650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity is associated with increased risk and worse prognosis of many tumours including those of the breast and of the esophagus. Adipokines released from the peritumoural adipose tissue promote the metastatic potential of cancer cells, suggesting the existence of a crosstalk between the adipose tissue and the surrounding tumour. Mitochondrial Ca2+ signaling contributes to the progression of carcinoma of different origins. However, whether adipocyte-derived factors modulate mitochondrial Ca2+ signaling in tumours is unknown. Here, we show that conditioned media derived from adipose tissue cultures (ADCM) enriched in precursor cells impinge on mitochondrial Ca2+ homeostasis of target cells. Moreover, in modulating mitochondrial Ca2+ responses, a univocal crosstalk exists between visceral adipose tissue-derived preadipocytes and esophageal cancer cells, and between subcutaneous adipose tissue-derived preadipocytes and triple-negative breast cancer cells. An unbiased metabolomic analysis of ADCM identified creatine and creatinine for their ability to modulate mitochondrial Ca2+ uptake, migration and proliferation of esophageal and breast tumour cells, respectively.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy
| | - Elisabetta Trevellin
- Internal Medicine Unit, Department of Medicine, Padua University Hospital, via Giustiniani 2, 35128, Padua, Italy
| | - Ilaria Piazza
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy
| | - Vincenzo Vindigni
- Clinic of Plastic and Reconstructive Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Mirto Foletto
- Bariatric Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy
| | - Roberto Vettor
- Internal Medicine Unit, Department of Medicine, Padua University Hospital, via Giustiniani 2, 35128, Padua, Italy.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
5
|
Ponomarenko I, Pasenov K, Churnosova M, Sorokina I, Aristova I, Churnosov V, Ponomarenko M, Reshetnikova Y, Reshetnikov E, Churnosov M. Obesity-Dependent Association of the rs10454142 PPP1R21 with Breast Cancer. Biomedicines 2024; 12:818. [PMID: 38672173 PMCID: PMC11048332 DOI: 10.3390/biomedicines12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The purpose of this work was to find a link between the breast cancer (BC)-risk effects of sex hormone-binding globulin (SHBG)-associated polymorphisms and obesity. The study was conducted on a sample of 1498 women (358 BC; 1140 controls) who, depending on the presence/absence of obesity, were divided into two groups: obese (119 BC; 253 controls) and non-obese (239 BC; 887 controls). Genotyping of nine SHBG-associated single nucleotide polymorphisms (SNP)-rs17496332 PRMT6, rs780093 GCKR, rs10454142 PPP1R21, rs3779195 BAIAP2L1, rs440837 ZBTB10, rs7910927 JMJD1C, rs4149056 SLCO1B1, rs8023580 NR2F2, and rs12150660 SHBG-was executed, and the BC-risk impact of these loci was analyzed by logistic regression separately in each group of obese/non-obese women. We found that the BC-risk effect correlated by GWAS with the SHBG-level polymorphism rs10454142 PPP1R21 depends on the presence/absence of obesity. The SHBG-lowering allele C rs10454142 PPP1R21 has a risk value for BC in obese women (allelic model: CvsT, OR = 1.52, 95%CI = 1.10-2.11, and pperm = 0.013; additive model: CCvsTCvsTT, OR = 1.71, 95%CI = 1.15-2.62, and pperm = 0.011; dominant model: CC + TCvsTT, OR = 1.95, 95%CI = 1.13-3.37, and pperm = 0.017) and is not associated with the disease in women without obesity. SNP rs10454142 PPP1R21 and 10 proxy SNPs have adipose-specific regulatory effects (epigenetic modifications of promoters/enhancers, DNA interaction with 51 transcription factors, eQTL/sQTL effects on five genes (PPP1R21, RP11-460M2.1, GTF2A1L, STON1-GTF2A1L, and STON1), etc.), can be "likely cancer driver" SNPs, and are involved in cancer-significant pathways. In conclusion, our study detected an obesity-dependent association of the rs10454142 PPP1R21 with BC in women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State National Research University, 308015 Belgorod, Russia; (I.P.); (K.P.); (M.C.); (I.S.); (I.A.); (V.C.); (M.P.); (Y.R.); (E.R.)
| |
Collapse
|