1
|
Foti R, Storti G, Palmesano M, Scioli MG, Fiorelli E, Terriaca S, Cervelli G, Kim BS, Orlandi A, Cervelli V. Senescence in Adipose-Derived Stem Cells: Biological Mechanisms and Therapeutic Challenges. Int J Mol Sci 2024; 25:8390. [PMID: 39125960 PMCID: PMC11312747 DOI: 10.3390/ijms25158390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) represent a subset of the mesenchymal stem cells in every adipose compartment throughout the body. ADSCs can differentiate into various cell types, including chondrocytes, osteocytes, myocytes, and adipocytes. Moreover, they exhibit a notable potential to differentiate in vitro into cells from other germinal lineages, including endothelial cells and neurons. ADSCs have a wide range of clinical applications, from breast surgery to chronic wounds. Furthermore, they are a promising cell population for future tissue-engineering uses. Accumulating evidence indicates a decreased proliferation and differentiation potential of ADSCs with an increasing age, increasing body mass index, diabetes mellitus, metabolic syndrome, or exposure to radiotherapy. Therefore, the recent literature thoroughly investigates this cell population's senescence mechanisms and how they can hinder its possible therapeutic applications. This review will discuss the biological mechanisms and the physio-pathological causes behind ADSC senescence and how they can impact cellular functionality. Moreover, we will examine the possible strategies to invert these processes, re-establishing the full regenerative potential of this progenitor population.
Collapse
Affiliation(s)
- Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| |
Collapse
|
3
|
Liu Z, Wang Y, Ma X, Zhang L, Wang C. Role of epidural fat in the local milieu: what we know and what we don't. Connect Tissue Res 2024; 65:102-116. [PMID: 38493368 DOI: 10.1080/03008207.2024.2329871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Traditionally, the epidural fat (EF) is known as a physical buffer for the dural sac against the force and a lubricant facilitating the relative motion of the latter on the osseous spine. Along with the development of the studies on EF, controversies still exist on vital questions, such as the underlying mechanism of the spinal epidural lipomatosis. Meanwhile, the scattered and fragmented researches hinder the global insight into the seemingly dispensable tissue. METHODS Herein, we reviewed literature on the EF and its derivatives to elucidate the dynamic change and complex function of EF in the local milieu, especially at the pathophysiological conditions. We start with an introduction to EF and the current pathogenic landscape, emphasizing the interlink between the EF and adjacent structures. We generally categorize the major pathological changes of the EF into hypertrophy, atrophy, and inflammation. RESULTS AND CONCLUSIONS It is acknowledged that not only the EF (or its cellular components) may be influenced by various endogenic/exogenic and focal/systematic stimuli, but the adjacent structures can also in turn be affected by the EF, which may be a hidden pathogenic clue for specific spinal disease. Meanwhile, the unrevealed sections, which are also the directions the future research, are proposed according to the objective result and rational inference. Further effort should be taken to reveal the underlying mechanism and develop novel therapeutic pathways for the relevant diseases.
Collapse
Affiliation(s)
- Zhiming Liu
- Department of Spine Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yida Wang
- Department of Spine Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuexiao Ma
- Department of Spine Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Department of Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Wang
- Department of Spine Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Biniazan F, Stoian A, Haykal S. Adipose-Derived Stem Cells: Angiogenetic Potential and Utility in Tissue Engineering. Int J Mol Sci 2024; 25:2356. [PMID: 38397032 PMCID: PMC10889096 DOI: 10.3390/ijms25042356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Adipose tissue (AT) is a large and important energy storage organ as well as an endocrine organ with a critical role in many processes. Additionally, AT is an enormous and easily accessible source of multipotent cell types used in our day for all types of tissue regeneration. The ability of adipose-derived stem cells (ADSCs) to differentiate into other types of cells, such as endothelial cells (ECs), vascular smooth muscle cells, or cardiomyocytes, is used in tissue engineering in order to promote/stimulate the process of angiogenesis. Being a key for future successful clinical applications, functional vascular networks in engineered tissue are targeted by numerous in vivo and ex vivo studies. The article reviews the angiogenic potential of ADSCs and explores their capacity in the field of tissue engineering (TE).
Collapse
Affiliation(s)
- Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
| | - Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada; (F.B.); (A.S.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Toronto, 200 Elizabeth Street Suite 8N-869, Toronto, ON M5G2C4, Canada
| |
Collapse
|
5
|
Bonnet M, Ertlen C, Seblani M, Brezun JM, Coyle T, Cereda C, Zuccotti G, Colli M, Desouches C, Decherchi P, Carelli S, Marqueste T. Activated Human Adipose Tissue Transplantation Promotes Sensorimotor Recovery after Acute Spinal Cord Contusion in Rats. Cells 2024; 13:182. [PMID: 38247873 PMCID: PMC10814727 DOI: 10.3390/cells13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Traumatic spinal cord injuries (SCIs) often result in sensory, motor, and vegetative function loss below the injury site. Although preclinical results have been promising, significant solutions for SCI patients have not been achieved through translating repair strategies to clinical trials. In this study, we investigated the effective potential of mechanically activated lipoaspirated adipose tissue when transplanted into the epicenter of a thoracic spinal contusion. Male Sprague Dawley rats were divided into three experimental groups: SHAM (uninjured and untreated), NaCl (spinal cord contusion with NaCl application), and AF (spinal cord contusion with transplanted activated human fat). Pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) were measured to assess endogenous inflammation levels 14 days after injury. Sensorimotor recovery was monitored weekly for 12 weeks, and gait and electrophysiological analyses were performed at the end of this observational period. The results indicated that AF reduced endogenous inflammation post-SCI and there was a significant improvement in sensorimotor recovery. Moreover, activated adipose tissue also reinstated the segmental sensorimotor loop and the communication between supra- and sub-lesional spinal cord regions. This investigation highlights the efficacy of activated adipose tissue grafting in acute SCI, suggesting it is a promising therapeutic approach for spinal cord repair after traumatic contusion in humans.
Collapse
Affiliation(s)
- Maxime Bonnet
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Céline Ertlen
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Mostafa Seblani
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Jean-Michel Brezun
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Thelma Coyle
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Paediatrics, Buzzi Children’s Hospital, Via Ludovico Castelvetro 32, 20154 Milano, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center «Romeo ed Enrica Invernizzi», Department of Biomedical and Clinical Sciences, University of Milano (UNIMI), Via G.B. Grassi 74, 20157 Milan, Italy;
- Department of Paediatrics, Buzzi Children’s Hospital, Via Ludovico Castelvetro 32, 20154 Milano, Italy
| | - Mattia Colli
- Podgora7 Clinic, Via Podgora 7, 20122 Milano, Italy
| | - Christophe Desouches
- Clinique Phénicia—CD Esthétique, 5 Boulevard Notre Dame, F-13006 Marseille, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| | - Stephana Carelli
- Center of Functional Genomics and Rare Diseases, Department of Paediatrics, Buzzi Children’s Hospital, Via Ludovico Castelvetro 32, 20154 Milano, Italy
- Pediatric Clinical Research Center «Romeo ed Enrica Invernizzi», Department of Biomedical and Clinical Sciences, University of Milano (UNIMI), Via G.B. Grassi 74, 20157 Milan, Italy;
| | - Tanguy Marqueste
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, CEDEX 09, F-13288 Marseille, France (J.-M.B.); (P.D.)
| |
Collapse
|
6
|
Wu H, Fan Y, Zhang M. Advanced Progress in the Role of Adipose-Derived Mesenchymal Stromal/Stem Cells in the Application of Central Nervous System Disorders. Pharmaceutics 2023; 15:2637. [PMID: 38004615 PMCID: PMC10674952 DOI: 10.3390/pharmaceutics15112637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, adipose-derived mesenchymal stromal/stem cells (ADMSCs) are recognized as a highly promising material for stem cell therapy due to their accessibility and safety. Given the frequently irreversible damage to neural cells associated with CNS disorders, ADMSC-related therapy, which primarily encompasses ADMSC transplantation and injection with exosomes derived from ADMSCs or secretome, has the capability to inhibit inflammatory response and neuronal apoptosis, promote neural regeneration, as well as modulate immune responses, holding potential as a comprehensive approach to treat CNS disorders and improve prognosis. Empirical evidence from both experiments and clinical trials convincingly demonstrates the satisfactory safety and efficacy of ADMSC-related therapies. This review provides a systematic summary of the role of ADMSCs in the treatment of central nervous system (CNS) disorders and explores their therapeutic potential for clinical application. ADMSC-related therapy offers a promising avenue to mitigate damage and enhance neurological function in central nervous system (CNS) disorders. However, further research is necessary to establish the safety and efficacy of clinical ADMSC-based therapy, optimize targeting accuracy, and refine delivery approaches for practical applications.
Collapse
Affiliation(s)
- Haiyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; (H.W.); (Y.F.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; (H.W.); (Y.F.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; (H.W.); (Y.F.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|