1
|
Ewendt F, Drewitz F, Althammer M, Eichler C, Brandsch C, Brey S, Winkler TH, Wilkens MR, St-Arnaud R, Kreutz M, Stangl GI. Vitamin D stimulates Il-15 synthesis in rodent muscle. Biochem Biophys Rep 2025; 41:101925. [PMID: 40134939 PMCID: PMC11935148 DOI: 10.1016/j.bbrep.2025.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 03/27/2025] Open
Abstract
Besides its classical skeletal function, vitamin D plays a critical role in both skeletal muscle and the immune system. Interleukin-15 (IL-15), which is highly expressed, and secreted complexed with its receptor, IL-15Rα, by skeletal muscle, stimulates the development of immune cells and affects myogenesis and muscle mass. However, little is known about possible regulators of this myokine. To test whether vitamin D could be a regulator of muscle IL-15 and IL-15Rα expression, C2C12 myotubes were treated with vitamin D3 metabolites and analysis were performed in gastrocnemius muscles of rats treated with a single intraperitoneal dose of 1,25(OH)2D3. The role of VDR was investigated by siRNA technique in C2C12 myotubes and in gastrocnemius muscles of vitamin D receptor knockout (Vdr-KO) mice. Treatment of C2C12 myotubes with 1,25(OH)2D3 or 25(OH)D3 increased Il-15 gene expression in a dose-dependent manner and 1,25(OH)2D3 also moderately increased the relative Il-15 protein amount. Rats treated with a single dose of 1,25(OH)2D3 demonstrated a higher mRNA abundance of muscle Il-15 than controls. The 1,25(OH)2D3 effect on Il-15 was considerably weaker in C2C12 myotubes treated with Vdr-specific siRNA. Vdr-KO mice showed significantly lower muscle Il-15 mRNA than WT mice. Il-15Ra mRNA and Il-15/Il-15Rα protein abundance were unaffected by 1,25(OH)2D3-treatment or VDR functionality, and Cyp27b1 activity is not required for 25(OH)D3-mediated Il-15 gene expression. The results provide evidence for a regulatory role of hydroxyvitamin D3 metabolites on the Il-15 synthesis in skeletal muscle cells, which is largely mediated by the VDR.
Collapse
Affiliation(s)
- Franz Ewendt
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| | - Fabienne Drewitz
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| | - Michael Althammer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Cosima Eichler
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| | - Corinna Brandsch
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| | - Stefanie Brey
- Division of Genetics, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Mirja R. Wilkens
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - René St-Arnaud
- Shriners Hospitals for Children - Canada and McGill University, Montréal, Quebec, Canada
| | - Marina Kreutz
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Gabriele I. Stangl
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| |
Collapse
|
2
|
Skalny AV, Aschner M, Tsatsakis A, Rocha JB, Santamaria A, Spandidos DA, Martins AC, Lu R, Korobeinikova TV, Chen W, Chang JS, Chao JC, Li C, Tinkov AA. Role of vitamins beyond vitamin D 3 in bone health and osteoporosis (Review). Int J Mol Med 2024; 53:9. [PMID: 38063255 PMCID: PMC10712697 DOI: 10.3892/ijmm.2023.5333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/β‑catenin signaling, as well as the TGFβ/Smad pathway (α‑tocopherol). Vitamin A metabolite (all‑trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP‑ and Wnt/β‑catenin‑mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa‑B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti‑osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Division of Morphology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Joao B.T. Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Faculty of Science, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tatiana V. Korobeinikova
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jung-Su Chang
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Jane C.J. Chao
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Alexey A. Tinkov
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|