1
|
Baddouri L, Hannig M. Probiotics as an adjunctive therapy in periodontitis treatment-reality or illusion-a clinical perspective. NPJ Biofilms Microbiomes 2024; 10:148. [PMID: 39681550 DOI: 10.1038/s41522-024-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontitis, a prevalent oral health issue, involves various microorganisms and clinical effects. This review examines probiotics as adjunctive therapy for periodontitis by analyzing forty clinical studies. Findings showed mixed results due to differences in study design, probiotic types, and clinical parameters; however, probiotics improved outcomes in severe cases. Caution is advised when interpreting these results, as longer follow-up periods reveal variability and potential regression in effects.
Collapse
Affiliation(s)
- Lamyae Baddouri
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Pharmacy, Saarland University, Saarbrucken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.
| |
Collapse
|
2
|
Haririzadeh Jouriani F, Torfeh M, Torkamaneh M, Sepehr A, Rohani M, Aghamohammad S. The preventive and therapeutic role of Lactobacillus spp. in in vitro model of inflammation via affecting autophagy signaling pathway. Immun Inflamm Dis 2024; 12:e1336. [PMID: 39189796 PMCID: PMC11348509 DOI: 10.1002/iid3.1336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Intestinal inflammation has various causes and leads to some inflammatory diseases, of which autophagy pathway dysfunction could be considered as one of them. Probiotics could have a positive effect on reducing inflammation by activating the autophagy pathway. To evaluate the precise effects of probiotics as preventive and therapeutic agents to control the symptoms of inflammatory diseases, we aimed to investigate the efficacy of Lactobacillus spp. in regulating the autophagy signaling pathway. METHODS A quantitative real-time polymerase chain reaction assay was used to analyze the expression of autophagy genes involved in the formation of phagophores, autophagosomes, and autolysosomes after exposing the HT-29 cell line to sonicated pathogens and adding Lactobacillus spp. before, after, and simultaneously with inflammation. A cytokine assay was also accomplished to evaluate the interleukin (IL)-6 and IL-1β level following the probiotic treatment. RESULTS Lactobacillus spp. generally increased autophagy gene expression and consumption of Lactobacillus spp. before, simultaneously, and after inflammation, ultimately leading to activate autophagy pathways. The proinflammatory cytokines including IL-6 and IL-1β decreased after probiotic treatment. CONCLUSIONS Our native probiotic Lactobacillus spp. showed beneficial effects on HT-29 cells by increasing autophagy gene expression and decreasing the proinflammatory cytokines production in all treatments. Therefore, this novel probiotic cocktail Lactobacillus spp. can prevent and treat inflammation-related diseases.
Collapse
Affiliation(s)
| | - Mahnaz Torfeh
- Department of BacteriologyPasteur Institute of IranTehranIran
| | | | - Amin Sepehr
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mahdi Rohani
- Department of BacteriologyPasteur Institute of IranTehranIran
| | | |
Collapse
|
3
|
Torkamaneh M, Torfeh M, Jouriani FH, Sepehr A, Ashrafian F, Aghamohammad S, Rohani M. Investigating the crucial role of selected Bifidobacterium probiotic strains in preventing or reducing inflammation by affecting the autophagy pathway. Lett Appl Microbiol 2023; 76:ovad135. [PMID: 38081214 DOI: 10.1093/lambio/ovad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/14/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
Several studies have shown that probiotics can prevent and reduce inflammation in inflammation-related diseases. However, few studies have focused on the interaction between host and probiotics in modulating the immune system through autophagy. Therefore, we aimed to investigate the preventive and/or therapeutic effects of native potential probiotic breast milk-isolated Bifidobacterium spp. (i.e. B. bifidum, B. longum, and B. infantis) on the inflammatory cascade by affecting autophagy gene expression 24 and 48 h after treatment. Autophagy genes involved in different stages of the autophagy process were selected by quantitative polymerase chain reaction (qPCR). Gene expression investigation was accomplished by exposing the human colorectal adenocarcinoma cell line (HT-29) to sonicated pathogens (1.5 × 108 bacterial CFU ml-1) and adding Bifidobacterium spp. (MOI10) before, after, and simultaneously with induction of inflammation. An equal volume of RPMI medium was used as a control. Generally, our native potential probiotic Bifidobacterium spp. can increase the autophagy gene expression in comparison with pathogen. Moreover, an increase in gene expression was observed with our probiotic strains' consumption in all stages of autophagy. Totally, our selected Bifidobacterium spp. can increase autophagy gene expression before, simultaneously, and after the inflammation induction, so they can prevent and reduce inflammation in an in vitro model of inflammation.
Collapse
Affiliation(s)
- Mahdi Torkamaneh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahnaz Torfeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Shadi Aghamohammad
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
4
|
Shahbazi R, Yasavoli-Sharahi H, Mallet JF, Sharifzad F, Alsadi N, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Novel Probiotic Bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53) Modulates Gut Immunity through Epigenetic Mechanisms. Microorganisms 2023; 11:2456. [PMID: 37894114 PMCID: PMC10609533 DOI: 10.3390/microorganisms11102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Gut immune system homeostasis is crucial to overall host health. Immune disturbance at the gut level may lead to systemic and distant sites' immune dysfunction. Probiotics and prebiotics consumption have been shown to improve gut microbiota composition and function and enhance gut immunity. In the current study, the immunomodulatory and anti-inflammatory effects of viable and heat-inactivated forms of the novel probiotic bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53), as well as the prebiotic protocatechuic acid (PCA) derived from the fermentation of blueberry juice by SV-53, were examined. To this end, female Balb/c mice received probiotic (viable or heat-inactivated), prebiotic, or a mixture of viable probiotic and prebiotic in drinking water for three weeks. To better decipher the immunomodulatory effects of biotics intake, gut microbiota, gut mucosal immunity, T helper-17 (Th17) cell-related cytokines, and epigenetic modulation of Th17 cells were studied. In mice receiving viable SV-53 and PCA, a significant increase was noted in serum IgA levels and the number of IgA-producing B cells in the ileum. A significant reduction was observed in the concentrations of proinflammatory cytokines, including interleukin (IL)-17A, IL-6, and IL-23, and expression of two proinflammatory miRNAs, miR-223 and miR425, in treated groups. In addition, heat-inactivated SV-53 exerted immunomodulatory properties by elevating the IgA concentration in the serum and reducing IL-6 and IL-23 levels in the ileum. DNA methylation analysis revealed the role of heat-inactivated SV-53 in the epigenetic regulation of genes related to Th17 and IL-17 production and function, including Il6, Il17rc, Il9, Il11, Akt1, Ikbkg, Sgk1, Cblb, and Smad4. Taken together, these findings may reflect the potential role of the novel probiotic bacterium SV-53 and prebiotic PCA in improving gut immunity and homeostasis. Further studies are required to ascertain the beneficial effects of this novel bacterium in the inflammatory state.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Mallet
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|