1
|
Tumosienė I, Stasevych M, Zvarych V, Jonuškienė I, Kantminienė K, Petrikaitė V. Novel 5-Oxopyrrolidine-3-carbohydrazides as Potent Protein Kinase Inhibitors: Synthesis, Anticancer Evaluation, and Molecular Modeling. Int J Mol Sci 2025; 26:3162. [PMID: 40243953 PMCID: PMC11989890 DOI: 10.3390/ijms26073162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
A series of novel hydrazones bearing diphenylamine and 5-oxopyrrolidine moieties, along with benzene and naphthalene rings substituted with hydroxy, alkoxy, or carboxylic groups, were synthesized. Their anticancer activity was evaluated in vitro using both 2D (MTT and 'wound healing' assays) and 3D (cell spheroid) models against human melanoma IGR39 cells, the triple-negative breast cancer cell line MDA-MB-231, and pancreatic carcinoma Panc-1 cell line. Compounds 8 (2-hydroxybenzylidene derivative) and 12 (2-hydroxynaphthalenylmethylene derivative) demonstrated the highest cytotoxicity in both 2D and 3D assays, while compounds 4 (2,5-dimethoxybenzylidene derivative) and 6 (2,4,6-trimethoxybenzylidene derivative) were most effective at inhibiting cell migration. Notably, all compounds exhibited lower activity against the Panc-1 cancer cell line in a cell monolayer, but the effects on spheroid cell viability in 3D models were comparable across all tested cancer cell lines. Molecular docking studies of the most active hydrazones suggested that these compounds may act as multikinase inhibitors. In particular, 2-hydroxynaphthalenylmethylene derivative 12 showed high binding affinity values (-11.174 and -11.471 kcal/mol) to the active sites of two key protein kinases-a non-receptor TK (SCR) and STPK (BRAF)-simultaneously.
Collapse
Affiliation(s)
- Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (I.T.); (I.J.)
| | - Maryna Stasevych
- Department of Technology of Biologically Active Substances, Pharmacy, and Biotechnology, Lviv Polytechnic National University, S. Bandera Str. 12, 79013 Lviv, Ukraine;
| | - Viktor Zvarych
- Department of Automated Control Systems, Lviv Polytechnic National University, S. Bandera Str. 12, 79013 Lviv, Ukraine;
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Pl. 19, 50254 Kaunas, Lithuania; (I.T.); (I.J.)
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Pr. 13, 50162 Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Al. 7, 10257 Vilnius, Lithuania
| |
Collapse
|
2
|
Yan T, Jiang Q, Ni G, Ma H, Meng Y, Kang G, Xu M, Peng F, Li H, Chen X, Wang M. WZ-3146 acts as a novel small molecule inhibitor of KIF4A to inhibit glioma progression by inducing apoptosis. Cancer Cell Int 2024; 24:221. [PMID: 38937742 PMCID: PMC11209999 DOI: 10.1186/s12935-024-03409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Glioma is considered the most common primary malignant tumor of the central nervous system. Although traditional treatments have not achieved satisfactory outcomes, recently, targeted therapies for glioma have shown promising efficacy. However, due to the single-target nature of targeted therapy, traditional targeted therapies are ineffective; thus, novel therapeutic targets are urgently needed. METHODS The gene expression data for glioma patients were derived from the GEO (GSE4290, GSE50161), TCGA and CGGA databases. Next, the upregulated genes obtained from the above databases were cross-analyzed, finally, 10 overlapping genes (BIRC5, FOXM1, EZH2, CDK1, KIF11, KIF4A, NDC80, PBK, RRM2, and TOP2A) were ultimately screened and only KIF4A expression has the strongest correlation with clinical characteristics in glioma patients. Futher, the TCGA and CGGA database were utilized to explore the correlation of KIF4A expression with glioma prognosis. Then, qRT-PCR and Western blot was used to detect the KIF4A mRNA and protein expression level in glioma cells, respectively. And WZ-3146, the small molecule inhibitor targeting KIF4A, were screened by Cmap analysis. Subsequently, the effect of KIF4A knockdown or WZ-3146 treatment on glioma was measured by the MTT, EdU, Colony formation assay and Transwell assay. Ultimately, GSEA enrichment analysis was performed to find that the apoptotic pathway could be regulated by KIF4A in glioma, in addition, the effect of WZ-3146 on glioma apoptosis was detected by flow cytometry and Western blot. RESULTS In the present study, we confirmed that KIF4A is abnormally overexpressed in glioma. In addition, KIF4A overexpression is a key indicator of glioma prognosis; moreover, suppressing KIF4A expression can inhibit glioma progression. We also discovered that WZ-3146, a small molecule inhibitor of KIF4A, can induce apoptosis in glioma cells and exhibit antiglioma effects. CONCLUSION In conclusion, these observations demonstrated that targeting KIF4A can inhibit glioma progression. With further research, WZ-3146, a small molecule inhibitor of KIF4A, could be combined with other molecular targeted drugs to cooperatively inhibit glioma progression.
Collapse
Affiliation(s)
- Tao Yan
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Qing Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
- Key Laboratory of Neurosurgery of Colleges and Universities in Heilongjiang Province, Harbin, Heilongjiang Province, 150001, China
| | - Guangpu Ni
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Haofeng Ma
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Yun Meng
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Guiqiong Kang
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Meifang Xu
- Linyi Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
- Department of Neurology, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Fei Peng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Huadong Li
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China.
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.
- Key Laboratory of Neurosurgery of Colleges and Universities in Heilongjiang Province, Harbin, Heilongjiang Province, 150001, China.
| | - Mingguang Wang
- Department of Neurosurgery, Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
3
|
Dwivedi SK, Arachchige DL, Waters M, Jaeger S, Mahmoud M, Olowolagba AM, Tucker DR, Geborkoff MR, Werner T, Luck RL, Godugu B, Liu H. Near-infrared Absorption and Emission Probes with Optimal Connection Bridges for Live Monitoring of NAD(P)H Dynamics in Living Systems. SENSORS AND ACTUATORS. B, CHEMICAL 2024; 402:135073. [PMID: 38559378 PMCID: PMC10976508 DOI: 10.1016/j.snb.2023.135073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two NAD(P)H-biosensing probes consisting of 1,3,3-trimethyl-3H-indolium and 3-quinolinium acceptors, linked by thiophene, A, and 3,4-ethylenedioxythiophene, B, bridges are detailed. We synthesized probes C and D, replacing the thiophene connection in probe A with phenyl and 2,1,3-benzothiadiazole units, respectively. Probe E was prepared by substituting probe A's 3-quinolinium unit with a 1-methylquinoxalin-1-ium unit. Solutions are non-fluorescent but in the presence of NADH, exhibit near-infrared fluorescence at 742.1 nm and 727.2 nm for probes A and B, respectively, and generate absorbance signals at 690.6 nm and 685.9 nm. In contrast, probes C and D displayed pronounced interference from NADH fluorescence at 450 nm, whereas probe E exhibited minimal fluorescence alterations in response to NAD(P)H. Pre-treatment of A549 cells with glucose in the presence of probe A led to a significant increase in fluorescence intensity. Additionally, subjecting probe A to lactate and pyruvate molecules resulted in opposite changes in NAD(P)H levels, with lactate causing a substantial increase in fluorescence intensity, conversely, pyruvate resulted in a sharp decrease. Treatment of A549 cells with varying concentrations of the drugs cisplatin, gemcitabine, and camptothecin (5, 10, and 20 μM) led to a concentration-dependent increase in intracellular fluorescence intensity, signifying a rise in NAD(P)H levels. Finally, fruit fly larvae were treated with different concentrations of NADH and cisplatin illustrating applicability to live organisms. The results demonstrated a direct correlation between fluorescence intensity and the concentration of NADH and cisplatin, respectively, further confirming the efficacy of probe A in sensing changes in NAD(P)H levels within a whole organism.
Collapse
Affiliation(s)
- Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Mohamed Mahmoud
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- Health Research Institute, Michigan Technological University, Houghton, MI 49931
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Micaela R Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|