1
|
Pereira JL, Arede L, Ferreira F, Matos A, Pereira D, Santos RF, Carmo AM, Oliveira MJ, Machado JC, Duarte D, Dos Santos NR. Antibody blockade of the PSGL-1 immune checkpoint enhances T-cell responses to B-cell lymphoma. Leukemia 2025; 39:178-188. [PMID: 39455852 DOI: 10.1038/s41375-024-02446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Despite advancements in cancer immunotherapy, most lymphomas remain unresponsive to checkpoint inhibitors. P-selectin glycoprotein ligand-1 (PSGL-1), recently identified as a promoter of T-cell exhaustion in murine melanoma models, has emerged as a novel immune checkpoint protein and promising immunotherapeutic target. In this study, we investigated the potential of PSGL-1 antibody targeting in B-cell lymphoma. Using allogeneic co-culture systems, we demonstrated that targeted antibody interventions against human PSGL-1 enhanced T-cell activation and effector cytokine production in response to lymphoma cells. Moreover, in vitro treatment of primary lymphoma cell suspensions with PSGL-1 antibody resulted in increased activation of autologous lymphoma-infiltrating T cells. Using the A20 syngeneic B-cell lymphoma mouse model, we found that PSGL-1 antibody treatment significantly slowed tumor development and reduced the endpoint tumor burden. This antitumoral effect was accompanied by augmented tumor infiltration of CD4+ and CD8+ T cells and reduced infiltration of regulatory T cells. Finally, anti-PSGL-1 administration enhanced the expansion of CAR T cells previously transferred to mice bearing the aggressive Eμ-Myc lymphoma cells and improved disease control. These results demonstrate that PSGL-1 antibody blockade bolsters T-cell activity against B-cell lymphoma, suggesting a potential novel immunotherapeutic approach for treating these malignancies.
Collapse
Affiliation(s)
- João L Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Liliana Arede
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Master´s Program in Bioengineering, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, and Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia Matos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Genetics Laboratory, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- Ecogenetics and Human Health, Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | - Dulcineia Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, IPO Porto, Porto, Portugal
| | - Rita F Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ESS-IPP, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Alexandre M Carmo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - José C Machado
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Delfim Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Hematology and Bone Marrow Transplantation, IPO Porto, Porto, Portugal
| | - Nuno R Dos Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Zhang C, Huang R, Ren L, Martincuks A, Song J, Kortylewski M, Swiderski P, Forman SJ, Yu H. Local CpG- Stat3 siRNA treatment improves antitumor effects of immune checkpoint inhibitors. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102357. [PMID: 39618825 PMCID: PMC11605413 DOI: 10.1016/j.omtn.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has significantly benefited patients with several types of solid tumors and some lymphomas. However, many of the treated patients do not have a durable clinical response. It has been demonstrated that rescuing exhausted CD8+ T cells is required for ICB-mediated antitumor effects. We recently developed an immunostimulatory strategy based on silencing STAT3 while stimulating immune responses by CpG, a ligand for Toll-like receptor 9 (TLR9). The CpG-small interfering RNA (siRNA) conjugates efficiently enter immune cells, silencing STAT3 and activating innate immunity to enhance T cell-mediated antitumor immune responses. In the present study, we demonstrate that blocking STAT3 through locally delivered CpG-Stat3 siRNA enhances the efficacies of the systemic PD-1 and CTLA4 blockade against mouse A20 B cell lymphoma. In addition, locally delivered CpG-Stat3 siRNA combined with systemic administration of PD-1 antibody significantly augmented both local and systemic antitumor effects against mouse B16 melanoma tumors, with enhanced tumor-associated T cell activation. Furthermore, locally delivered CpG-Stat3 siRNA enhanced CD8+ T cell tumor infiltration and antitumor activity in a xenograft tumor model. Overall, our studies in both B cell lymphoma and melanoma mouse models demonstrate the potential of combinatory immunotherapy with CpG-Stat3 siRNA and checkpoint inhibitors as a therapeutic strategy for B cell lymphoma and melanoma.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Rui Huang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Lyuzhi Ren
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - JiEun Song
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Bouroumeau A, Perdikis-Prati S, Lang N. Case report: From sequence to solution: tailoring treatment for transformed follicular lymphoma (DLBCL) through next generation sequencing study. Front Oncol 2024; 14:1308492. [PMID: 38487720 PMCID: PMC10937737 DOI: 10.3389/fonc.2024.1308492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024] Open
Abstract
Immune checkpoint blockade (ICB) has indeed transformed the outlook for many advanced-stage solid tumors, yet its effectiveness in hematological malignancies has been particularly limited, with success predominantly demonstrated in classical Hodgkin lymphoma (cHL) and immune-privilege subtypes of non-Hodgkin lymphoma (NHL). In this report, we present an impactful case of a 71-year-old man grappling with refractory follicular lymphoma (rFL) that had progressed to a high-grade lymphoma, leaving no conventional treatment options on the table. Notably, the histological examination of the tumor tissue revealed a markedly elevated PD-L1 expression, illuminating the potential for immunotherapy to be effective. Additionally, comprehensive gene sequencing unveiled a moderate tumor mutational burden (TMB), deepening our understanding of the tumor's molecular intricacies. As his health declined with no access to cell therapies or clinical trials at that time, a combination treatment of PD-1 ICB and an anti-CD20 drug surprisingly led to a significant improvement in his condition and long-term remission. While PD-1 ICB therapy has historically shown limited responses in non-Hodgkin lymphomas (NHLs), this case serves as a beacon of optimism, underscoring the promise of combining immunotherapy modalities and the potential of comprehensive molecular assessments in charting innovative treatments for extensively treated NHL patients. The quest for predictive biomarkers to gauge treatment response remains a formidable challenge. This report serves as a testament to the ever-evolving landscape of cancer treatment, where precision medicine and immunotherapy continue to unlock new possibilities for those confronting the most challenging malignancies.
Collapse
Affiliation(s)
- Antonin Bouroumeau
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospital, Geneva, Switzerland
| | | | - Noémie Lang
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
- Center of Translational Research in Oncohematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Zhang C, Huang R, Ren L, Song J, Kortylewski M, Swiderski P, Forman S, Yu H. Local CpG- Stat3 siRNA treatment improves antitumor effects of immune checkpoint inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553571. [PMID: 37645787 PMCID: PMC10462083 DOI: 10.1101/2023.08.17.553571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has significantly benefited patients with several types of solid tumors and some lymphomas. However, many of the treated patients do not have durable clinical response. It has been demonstrated that rescuing exhausted CD8 + T cells is required for ICB-mediated antitumor effects. We recently developed an immunostimulatory strategy based on silencing STAT3 while stimulating immune responses by CpG, ligand for Toll-like receptor 9 (TLR9). The CpG-small interfering RNA (siRNA) conjugates efficiently enter immune cells, silencing STAT3 and activating innate immunity to enhance T-cell mediated antitumor immune responses. In the present study, we demonstrate that blocking STAT3 through locally delivered CpG- Stat3 siRNA enhances the efficacies of the systemic PD-1 and CTLA4 blockade against mouse A20 B cell lymphoma. In addition, locally delivered CpG- Stat3 siRNA combined with systemic administration of PD-1 antibody significantly augmented both local and systemic antitumor effects against mouse B16 melanoma tumors, with enhanced tumor-associated T cell activation. Overall, our studies in both B cell lymphoma and melanoma mouse models demonstrate the potential of combinatory immunotherapy with CpG- Stat3 siRNA and checkpoint inhibitors as a therapeutic strategy for B cell lymphoma and melanoma.
Collapse
|