1
|
Borea R, Reduzzi C. The growing field of liquid biopsy and its Snowball effect on reshaping cancer management. THE JOURNAL OF LIQUID BIOPSY 2025; 8:100293. [PMID: 40255897 PMCID: PMC12008596 DOI: 10.1016/j.jlb.2025.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/22/2025]
Abstract
Liquid biopsy (LB) has emerged as a transformative tool in oncology, providing a minimally invasive approach for tumor detection, molecular characterization, and real-time treatment monitoring. By analyzing circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), extracellular vesicles (EVs), and microRNA (miRNA), LB enables comprehensive tumor profiling without the need for traditional tissue biopsies. Over the past decade, research in this field has expanded exponentially, leading to the integration of LB into clinical practice for specific cancer types, including lung and breast cancer. In 2024, the Journal of Liquid Biopsy (JLB) published innovative studies exploring the latest advancements in LB technologies, biomarkers, and their applications for cancer detection, minimal residual disease (MRD) monitoring, and therapy response assessment. This review synthesizes recent findings on the role of LB in cancer treatment and monitoring across different biomarkers, with a particular focus on newly published studies and their context within translational research. Additionally, it highlights emerging techniques such as fragmentomics, artificial intelligence, and multiomics, paving the way for more precise, personalized treatment decisions. Despite these advancements, challenges remain in standardizing methodologies, optimizing clinical validation, and integrating LB into routine oncological workflows. This mini-review highlights the evolving landscape of LB research and its potential to revolutionize cancer diagnosis, treatment monitoring, and therapeutic decision-making, ushering in a new era of precision oncology.
Collapse
Affiliation(s)
- Roberto Borea
- Department of Public Health, University Federico II of Naples, Naples, Italy
- Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY, 10021, USA
| |
Collapse
|
2
|
Gostomczyk K, Drozd M, Marsool Marsool MD, Pandey A, Tugas K, Chacon J, Tayyab H, Ullah A, Borowczak J, Szylberg Ł. Biomarkers for the detection of circulating tumor cells. Exp Cell Res 2025; 448:114555. [PMID: 40228709 DOI: 10.1016/j.yexcr.2025.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Circulating tumor cells (CTCs) have emerged as a key biomarker in cancer detection and prognosis, and their molecular profiling is gaining importance in precision oncology. Liquid biopsies, which allow the extraction of CTCs, circulating tumor DNA (ctDNA) or cell-free DNA (cfDNA), have measurable advantages over traditional tissue biopsies, especially when molecular material is difficult to obtain. However, this method is not without limitations. Difficulties in differentiating between primary and metastatic lesions, uncertain predictive values and the complexity of the biomarkers used can prove challenging. Recently, high cell heterogeneity has been identified as the main obstacle to achieving high diagnostic accuracy. Because not all cells undergo epithelial-mesenchymal transition (EMT) at the same time, there is a large population of hybrid CTCs that express both epithelial and mesenchymal markers. Since traditional diagnostic tools primarily detect epithelial markers, they are often unable to detect cells with a hybrid phenotype; therefore, additional markers may be required to avoid false negatives. In this review, we summarize recent reports on emerging CTCs markers, with particular emphasis on their use in cancer diagnosis. Most of them, including vimentin, TWIST1, SNAI1, ZEB1, cadherins, CD44, TGM2, PD-L1 and GATA, hold promise for the detection of CTCs, but are also implicated in cancer progression, metastasis, and therapeutic resistance. Therefore, understanding the nature and drivers of epithelial-mesenchymal plasticity (EMP) is critical to advancing our knowledge in this field.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland.
| | - Magdalena Drozd
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| | | | - Anju Pandey
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Jose Chacon
- American University of Integrative Sciences, Saint Martin, Cole Bay, Barbados
| | | | - Ashraf Ullah
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| |
Collapse
|
3
|
Gerratana L, Gianni C, Nicolò E, Pontolillo L, Bidard FC, Reduzzi C, Cristofanilli M. Mapping breast cancer therapy with circulating tumor cells: The expert perspective. Breast 2025; 81:104463. [PMID: 40188664 PMCID: PMC12002747 DOI: 10.1016/j.breast.2025.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/20/2025] Open
Abstract
Circulating tumor cells (CTCs) have emerged as a key prognostic biomarker for breast cancer, with their role becoming more pronounced in metastatic cases. In metastatic breast cancer, having five or more CTCs per 7.5 mL of blood is linked to poorer survival and more aggressive disease, marking it as stage IVaggressive. Conversely, fewer than five CTCs per 7.5 mL of blood indicates a less aggressive, stage IVindolent disease. Additionally, molecular CTCs characterization provides a real-time snapshot of tumor biology, capturing its temporal and spatial variability and providing insights into tumor behavior. Beyond their role in predicting outcomes, CTCs can help guide treatment intensity as shown in clinical trials like the STIC trial, offering a new way to tailor therapy alongside other liquid biopsy biomarkers such as circulating tumor DNA. The aim of our review is to focus on both enumeration and phenotyping of CTCs and examine how CTC-guided strategies can improve treatment tailoring and patient outcomes. We also explore the potential for integrating CTCs with other biomarkers, such as circulating tumor DNA, and discuss how innovative biomarker-driven clinical trial designs could further advance personalized treatment strategies.
Collapse
Affiliation(s)
- Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - Caterina Gianni
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA; Medical Oncology and Breast Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Forlì-Cesena, Italy
| | - Eleonora Nicolò
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Letizia Pontolillo
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA; Department of Translational Medicine and Surgery, Universita' Cattolica Del Sacro Cuore, Rome, Italy
| | | | - Carolina Reduzzi
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA.
| | - Massimo Cristofanilli
- Liquid Biopsy Platform, Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Roumeliotou A, Strati A, Chamchougia F, Xagara A, Tserpeli V, Smilkou S, Lagopodi E, Christopoulou A, Kontopodis E, Drositis I, Androulakis N, Georgoulias V, Koinis F, Kotsakis A, Lianidou E, Kallergi G. Comprehensive Analysis of CXCR4, JUNB, and PD-L1 Expression in Circulating Tumor Cells (CTCs) from Prostate Cancer Patients. Cells 2024; 13:782. [PMID: 38727318 PMCID: PMC11083423 DOI: 10.3390/cells13090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
CXCR4, JUNB and PD-L1 are implicated in cancer progression and metastasis. The current study investigated these biomarkers in CTCs isolated from metastatic prostate cancer (mPCa) patients at the RNA and protein levels. CTCs were isolated from 48 mPCa patients using the Ficoll density gradient and ISET system (17 out of 48). The (CK/PD-L1/CD45) and (CK/CXCR4/JUNB) phenotypes were identified using two triple immunofluorescence stainings followed by VyCAP platform analysis. Molecular analysis was conducted with an EpCAM-dependent method for 25/48 patients. CK-8, CK-18, CK-19, JUNB, CXCR4, PD-L1, and B2M (reference gene) were analyzed with RT-qPCR. The (CK+/PD-L1+/CD45-) and the (CK+/CXCR4+/JUNB+) were the most frequent phenotypes (61.1% and 62.5%, respectively). Furthermore, the (CK+/CXCR4+/JUNB-) phenotype was correlated with poorer progression-free survival [(PFS), HR: 2.5, p = 0.049], while the (CK+/PD-L1+/CD45-) phenotype was linked to decreased overall survival [(OS), HR: 262.7, p = 0.007]. Molecular analysis revealed that 76.0% of the samples were positive for CK-8,18, and 19, while 28.0% were positive for JUNB, 44.0% for CXCR4, and 48.0% for PD-L1. Conclusively, CXCR4, JUNB, and PD-L1 were highly expressed in CTCs from mPCa patients. The CXCR4 protein expression was associated with poorer PFS, while PD-L1 was correlated with decreased OS, providing new biomarkers with potential clinical relevance.
Collapse
Affiliation(s)
- Argyro Roumeliotou
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| | - Areti Strati
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Foteini Chamchougia
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| | - Anastasia Xagara
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Victoria Tserpeli
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Stavroula Smilkou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Elina Lagopodi
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | | | - Emmanouil Kontopodis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Ioannis Drositis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Nikolaos Androulakis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Vassilis Georgoulias
- Hellenic Oncology Research Group, 11526 Athens, Greece;
- First Department of Medical Oncology, Metropolitan General Hospital, 15562 Athens, Greece
| | - Filippos Koinis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Athanasios Kotsakis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| |
Collapse
|
5
|
Spagnolo CC, Pepe F, Ciappina G, Nucera F, Ruggeri P, Squeri A, Speranza D, Silvestris N, Malapelle U, Santarpia M. Circulating biomarkers as predictors of response to immune checkpoint inhibitors in NSCLC: Are we on the right path? Crit Rev Oncol Hematol 2024; 197:104332. [PMID: 38580184 DOI: 10.1016/j.critrevonc.2024.104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Immune checkpoints inhibitors (ICIs) have markedly improved the therapeutic management of advanced NSCLC and, more recently, they have demonstrated efficacy also in the early-stage disease. Despite better survival outcomes with ICIs compared to standard chemotherapy, a large proportion of patients can derive limited clinical benefit from these agents. So far, few predictive biomarkers, including the programmed death-ligand 1 (PD-L1), have been introduced in clinical practice. Therefore, there is an urgent need to identify novel biomarkers to select patients for immunotherapy, to improve efficacy and avoid unnecessary toxicity. A deeper understanding of the mechanisms involved in antitumor immunity and advances in the field of liquid biopsy have led to the identification of a wide range of circulating biomarkers that could potentially predict response to immunotherapy. Herein, we provide an updated overview of these circulating biomarkers, focusing on emerging data from clinical studies and describing modern technologies used for their detection.
Collapse
Affiliation(s)
- Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Via S. Pansini, Naples 80131, Italy
| | - Giuliana Ciappina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina 98122, Italy
| | - Paolo Ruggeri
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina 98122, Italy
| | - Andrea Squeri
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Via S. Pansini, Naples 80131, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy.
| |
Collapse
|