1
|
Achappa S, Aldabaan NA, Desai SV, Muddapur UM, Shaikh IA, Mahnashi MH, Alshehri AA, Mannasaheb BA, Khan AA. Computational Exploration of Potential Pharmacological Inhibitors Targeting the Envelope Protein of the Kyasanur Forest Disease Virus. Pharmaceuticals (Basel) 2024; 17:884. [PMID: 39065734 PMCID: PMC11279457 DOI: 10.3390/ph17070884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
The limitations of the current vaccination strategy for the Kyasanur Forest Disease virus (KFDV) underscore the critical need for effective antiviral treatments, highlighting the crucial importance of exploring novel therapeutic approaches through in silico drug design. Kyasanur Forest Disease, caused by KFDV, is a tick-borne disease with a mortality of 3-5% and an annual incidence of 400 to 500 cases. In the early stage of infection, the envelope protein plays a crucial role by facilitating host-virus interactions. The objective of this research is to develop effective antivirals targeting the envelope protein to disrupt the virus-host interaction. In line with this, the 3D structure of the envelope protein was modeled and refined through molecular modeling techniques, and subsequently, ligands were designed via de novo design and pharmacophore screening, yielding 12 potential hits followed by ADMET analysis. The top five candidates underwent geometry optimization and molecular docking. Notably, compounds L4 (SA28) and L3 (CNP0247967) are predicted to have significant binding affinities of -8.91 and -7.58 kcal/mol, respectively, toward the envelope protein, based on computational models. Both compounds demonstrated stability during 200 ns molecular dynamics simulations, and the MM-GBSA binding free-energy values were -85.26 ± 4.63 kcal/mol and -66.60 ± 2.92 kcal/mol for the envelope protein L3 and L4 complexes, respectively. Based on the computational prediction, it is suggested that both compounds have potential as drug candidates for controlling host-virus interactions by targeting the envelope protein. Further validation through in-vitro assays would complement the findings of the present in silico investigations.
Collapse
Affiliation(s)
- Sharanappa Achappa
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India; (S.A.); (U.M.M.)
| | | | - Shivalingsarj V. Desai
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India; (S.A.); (U.M.M.)
| | - Uday M. Muddapur
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India; (S.A.); (U.M.M.)
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia;
| | - Abdullateef A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 66462, Saudi Arabia;
| | | | - Aejaz Abdullatif Khan
- Department of General Science, Ibn Sina National College for Medical Studies, Jeddah 21418, Saudi Arabia
| |
Collapse
|
2
|
Srikanth UK, Marinaik CB, Rao S, Gomes AR, Rathnamma D, Isloor S, T. Lakshmikanth B, K. Siddaramegowda C, Rizwan A, Byregowda SM, Venkatesha MD, Munivenkatarayappa A, Hegde R. Studies on the sequential pathology of Kyasanur Forest Disease (KFD) in Mouse brain: KFD virus induces apoptosis of neurons in cerebrum and hippocampus. PLoS One 2024; 19:e0297143. [PMID: 38427645 PMCID: PMC10906829 DOI: 10.1371/journal.pone.0297143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/28/2023] [Indexed: 03/03/2024] Open
Abstract
The sequential pathology of Kyasanur forest disease (KFD) in mouse brain was assessed in this study. Kyasanur forest disease virus (KFDV) strain P9605 used in this study was confirmed by real-time reverse transcriptase-polymerase chain reaction targeting the NS5 gene. Mouse Lethal Dose 50 (MLD50) of the virus was determined by in-vivo mice inoculation test. One MLD50 of the KFDV was inoculated intra-cerebrally into 36 mice aged 2-3 weeks. Another group of 36 age-matched mice that served as control group were inoculated with plain media. Six mice each from infected and control groups were euthanized every 24 hrs intervals for six days. Brain tissues were collected in 10% NBF. The collected brain tissues were processed and subjected to histopathological studies by Hematoxylin and Eosin staining. Grossly, the infected mice showed symptoms of dullness, hunched back appearance, weakness, sluggish movements with indication of hind quarter paralysis on day four post-infection. These symptoms got aggravated with complete paralysis of the hind quarters, inability to move and death on 5th and 6th day post-infection. Microscopically, the brain showed apoptosis of neurons, perivascular cuffing, gliosis, congestion, neuropil vacuolation, meningitis, degeneration, and necrotic neurons. The real-time RT-PCR on hippocampus of the KFDV-infected mouse brain showed three-fold higher expression levels of Caspase 3, a crucial mediator of apoptosis. The cerebral cortex, cerebellum and hippocampus that control the motor neuron activities and muscle tone were primarily affected, possibly correlating with the gross symptoms of hind quarter paralysis, ataxia, and other motor neuron dysfunctions noticed. Taken together, these findings reveal that KFDV induces apoptosis of neurons in the cerebrum and hippocampus of KFDV infected mice. Further studies are needed to confirm if the lesions noticed in mice brain simulate the brain lesions in humans since gross motor-neuron symptoms are similar in mice as well as humans.
Collapse
Affiliation(s)
- Ullasgowda K. Srikanth
- Institute of Animal Health and Veterinary Biologicals, KVAFSU, Bangalore, India
- Veterinary College, KVAFSU, Bangalore, India
| | | | - Suguna Rao
- Veterinary College, KVAFSU, Bangalore, India
| | - Amitha Reena Gomes
- Institute of Animal Health and Veterinary Biologicals, KVAFSU, Bangalore, India
| | | | | | - Bharath T. Lakshmikanth
- Institute of Animal Health and Veterinary Biologicals, KVAFSU, Bangalore, India
- Veterinary College, KVAFSU, Bangalore, India
| | - Chinmayie K. Siddaramegowda
- Institute of Animal Health and Veterinary Biologicals, KVAFSU, Bangalore, India
- Veterinary College, KVAFSU, Bangalore, India
| | - Apsana Rizwan
- Institute of Animal Health and Veterinary Biologicals, KVAFSU, Bangalore, India
| | | | | | | | - Raveendra Hegde
- Institute of Animal Health and Veterinary Biologicals, KVAFSU, Bangalore, India
| |
Collapse
|
3
|
Zina SM, Hoarau G, Labetoulle M, Khairallah M, Rousseau A. Ocular Manifestations of Flavivirus Infections. Pathogens 2023; 12:1457. [PMID: 38133340 PMCID: PMC10747099 DOI: 10.3390/pathogens12121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Flaviviruses are a group of positive-sense, single-stranded RNA viruses predominantly transmitted by arthropods (mainly mosquitoes) that cause severe endemic infections and epidemics on a global scale. They represent a major cause of systemic morbidity and death and are expanding worldwide. Among this group, dengue fever, the West Nile virus, yellow fever, Japanese Encephalitis, and, recently, the Zika virus have been linked to a spectrum of ocular manifestations. These manifestations encompass subconjunctival hemorrhages and conjunctivitis, anterior and posterior uveitis (inclusive of vitritis, chorioretinitis, and retinal vasculitis), maculopathy, retinal hemorrhages, and optic neuritis. Clinical diagnosis of these infectious diseases is primarily based on epidemiological data, history, systemic symptoms and signs, and the pattern of ocular involvement. Diagnosis confirmation relies on laboratory testing, including RT-PCR and serological testing. Ocular involvement typically follows a self-limited course but can result in irreversible visual impairment. Effective treatments of flavivirus infections are currently unavailable. Prevention remains the mainstay for arthropod vector and zoonotic disease control. Effective vaccines are available only for the yellow fever virus, dengue virus, and Japanese Encephalitis virus. This review comprehensively summarizes the current knowledge regarding the ophthalmic manifestations of the foremost flavivirus-associated human diseases.
Collapse
Affiliation(s)
- Sourour Meziou Zina
- Department of Ophthalmology, Bicêtre Hospital, Public Assistance, Hospitals of Paris, Reference Network for Rare Diseases in Ophthalmology (OPHTARA), 94270 Le Kremlin-Bicêtre, France; (S.M.Z.); (G.H.); (M.L.)
- Department of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia;
| | - Gautier Hoarau
- Department of Ophthalmology, Bicêtre Hospital, Public Assistance, Hospitals of Paris, Reference Network for Rare Diseases in Ophthalmology (OPHTARA), 94270 Le Kremlin-Bicêtre, France; (S.M.Z.); (G.H.); (M.L.)
| | - Marc Labetoulle
- Department of Ophthalmology, Bicêtre Hospital, Public Assistance, Hospitals of Paris, Reference Network for Rare Diseases in Ophthalmology (OPHTARA), 94270 Le Kremlin-Bicêtre, France; (S.M.Z.); (G.H.); (M.L.)
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Infectious Diseases Models for Innovative Therapies (IDMIT), French Alternative Energies and Atomic Commission (CEA), 92260 Fontenay-aux-Roses, France
| | - Moncef Khairallah
- Department of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia;
| | - Antoine Rousseau
- Department of Ophthalmology, Bicêtre Hospital, Public Assistance, Hospitals of Paris, Reference Network for Rare Diseases in Ophthalmology (OPHTARA), 94270 Le Kremlin-Bicêtre, France; (S.M.Z.); (G.H.); (M.L.)
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Infectious Diseases Models for Innovative Therapies (IDMIT), French Alternative Energies and Atomic Commission (CEA), 92260 Fontenay-aux-Roses, France
| |
Collapse
|