1
|
Dalle Carbonare L, Braggio M, Minoia A, Cominacini M, Romanelli MG, Pessoa J, Tiso N, Valenti MT. Modeling Musculoskeletal Disorders in Zebrafish: Advancements in Muscle and Bone Research. Cells 2024; 14:28. [PMID: 39791729 PMCID: PMC11719663 DOI: 10.3390/cells14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Zebrafish (Danio rerio) have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy. These models have provided significant insights into the molecular pathways involved in these diseases, helping to identify the key genetic and biochemical factors that contribute to their progression. These findings have also advanced our understanding of disease mechanisms and facilitated the development of potential therapeutic strategies for musculoskeletal disorders.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Michele Braggio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - Arianna Minoia
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy;
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| |
Collapse
|
2
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
3
|
Ren K, Wang Q, Jiang D, Liu E, Alsmaan J, Jiang R, Rutkove SB, Tian F. A comprehensive review of electrophysiological techniques in amyotrophic lateral sclerosis research. Front Cell Neurosci 2024; 18:1435619. [PMID: 39280794 PMCID: PMC11393746 DOI: 10.3389/fncel.2024.1435619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is characterized by progressive motor neuron degeneration, leading to widespread weakness and respiratory failure. While a variety of mechanisms have been proposed as causes of this disease, a full understanding remains elusive. Electrophysiological alterations, including increased motor axon excitability, likely play an important role in disease progression. There remains a critical need for non-animal disease models that can integrate electrophysiological tools to better understand underlying mechanisms, track disease progression, and evaluate potential therapeutic interventions. This review explores the integration of electrophysiological technologies with ALS disease models. It covers cellular and clinical electrophysiological tools and their applications in ALS research. Additionally, we examine conventional animal models and highlight advancements in humanized models and 3D organoid technologies. By bridging the gap between these models, we aim to enhance our understanding of ALS pathogenesis and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Keyuan Ren
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Qinglong Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Scripps Institution of Oceanography, San Diego, CA, United States
| | - Ethan Liu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Julie Alsmaan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Rui Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Feng Tian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Aranda-Martínez P, Sayed RKA, Fernández-Martínez J, Ramírez-Casas Y, Yang Y, Escames G, Acuña-Castroviejo D. Zebrafish as a Human Muscle Model for Studying Age-Dependent Sarcopenia and Frailty. Int J Mol Sci 2024; 25:6166. [PMID: 38892357 PMCID: PMC11172448 DOI: 10.3390/ijms25116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Currently, there is an increase in the aging of the population, which represents a risk factor for many diseases, including sarcopenia. Sarcopenia involves progressive loss of mass, strength, and function of the skeletal muscle. Some mechanisms include alterations in muscle structure, reduced regenerative capacity, oxidative stress, mitochondrial dysfunction, and inflammation. The zebrafish has emerged as a new model for studying skeletal muscle aging because of its numerous advantages, including histological and molecular similarity to human skeletal muscle. In this study, we used fish of 2, 10, 30, and 60 months of age. The older fish showed a higher frailty index with a value of 0.250 ± 0.000 because of reduced locomotor activity and alterations in biometric measurements. We observed changes in muscle structure with a decreased number of myocytes (0.031 myocytes/μm2 ± 0.004 at 60 months) and an increase in collagen with aging up to 15% ± 1.639 in the 60-month group, corresponding to alterations in the synthesis, degradation, and differentiation pathways. These changes were accompanied by mitochondrial alterations, such as a nearly 50% reduction in the number of intermyofibrillar mitochondria, 100% mitochondrial damage, and reduced mitochondrial dynamics. Overall, we demonstrated a similarity in the aging processes of muscle aging between zebrafish and mammals.
Collapse
Affiliation(s)
- Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (G.E.)
- Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| | - José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (G.E.)
- Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (G.E.)
- Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China;
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (G.E.)
- Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Universidad de Granada, 18016 Granada, Spain; (P.A.-M.); (J.F.-M.); (Y.R.-C.); (G.E.)
- Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs. Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
5
|
Callegari S, Mirzaei F, Agbaria L, Shariff S, Kantawala B, Moronge D, Ogendi BMO. Zebrafish as an Emerging Model for Sarcopenia: Considerations, Current Insights, and Future Directions. Int J Mol Sci 2023; 24:17018. [PMID: 38069340 PMCID: PMC10707505 DOI: 10.3390/ijms242317018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Sarcopenia poses a significant challenge to public health and can severely impact the quality of life of aging populations. Despite extensive efforts to study muscle degeneration using traditional animal models, there is still a lack of effective diagnostic tools, precise biomarkers, and treatments for sarcopenia. Zebrafish models have emerged as powerful tools in biomedical research, providing unique insights into age-related muscle disorders like sarcopenia. The advantages of using zebrafish models include their rapid growth outside of the embryo, optical transparency during early developmental stages, high reproductive potential, ease of husbandry, compact size, and genetic tractability. By deepening our understanding of the molecular processes underlying sarcopenia, we may develop novel diagnostic tools and effective treatments that can improve the lives of aging individuals affected by this condition. This review aims to explore the unique advantages of zebrafish as a model for sarcopenia research, highlight recent breakthroughs, outline potential avenues for future investigations, and emphasize the distinctive contributions that zebrafish models offer. Our research endeavors to contribute significantly to address the urgent need for practical solutions to reduce the impact of sarcopenia on aging populations, ultimately striving to enhance the quality of life for individuals affected by this condition.
Collapse
Affiliation(s)
- Santiago Callegari
- Vascular Medicine Outcomes Laboratory, Cardiology Department, Yale University, New Haven, CT 06510, USA
| | - Foad Mirzaei
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Lila Agbaria
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Sanobar Shariff
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Burhan Kantawala
- Faculty of General Medicine, Yerevan State Medical University after Mikhtar Heratsi, 2 Koryun, Yerevan 0025, Armenia; (F.M.); (L.A.); (B.K.)
| | - Desmond Moronge
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA;
| | - Brian M. O. Ogendi
- Department of Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA;
| |
Collapse
|