1
|
Zhu Y, Ge X, Chen Z, Chen T, Wu Y, Wen H, He Z, Ma C. METTL3-m6A methylase regulates the osteo-/odontogenic potential of stem cells from apical papilla via NFIC in apical periodontitis. Exp Cell Res 2025; 448:114576. [PMID: 40280320 DOI: 10.1016/j.yexcr.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Stem cells from the apical papilla (SCAPs) show strong odontogenic ability and can form root dentin. However, the underlying mechanisms that control the odontogenic differentiation of SCAPs in an inflammatory environment need further exploration. In the present study, we explored the regulatory role of METTL3 in the differentiation of SCAPs originating from tooth with apical periodontitis. Stem cells from the apical papilla derived from healthy teeth (SCAPs) and teeth with apical periodontitis (AP-SCAPs) were successfully isolated and cultured. The expressions of tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6) were higher in AP-SCAPs. A decrease in METTL3 expression accompanied the decreased osteo-/odontogenic differentiation ability of AP-SCAPs. Exploring the role of METTL3 on the osteo-/odontogenic differentiation of AP-SCAPs revealed that overexpression of METTL3 upregulated the odontogenic ability of AP-SCAPs. However, silencing METTL3 exerted the opposite effect. Overexpression of METTL3 suppressed the expression of TNF-α and IL-6 in AP-SCAPs, whereas knockdown of METTL3 in these cells enhanced TNF-α and IL-6 expression. METTL3 regulates the osteo-/odontogenic differentiation of SCAPs and modulates their inflammatory response. Furthermore, overexpression of METTL3 upregulated the methylation level, mRNA, and protein expression of nuclear factor-IC (NFIC) during mineralization induction. NFIC silencing attenuated osteo-/odontogenic differentiation of METTL3-overexpressed AP-SCAPs. In conclusion, METTL3-mediated-m6A upregulated the odontogenic differentiation of AP-SCAPs via NFIC. This paper elucidates a novel mechanism regulating the odontogenic differentiation of AP-SCAPs, and METTL3 may be a new target for regenerative endodontic treatment.
Collapse
Affiliation(s)
- Yongna Zhu
- Department of Stomatology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233040, China
| | - Xiang Ge
- Department of Stomatology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233040, China
| | - Zhi Chen
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Tingting Chen
- Department of Stomatology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233040, China; Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China
| | - Yue Wu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Hebao Wen
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui, 233000, China; Department of Physical Education and Arts, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Zeyu He
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Caiyun Ma
- Department of Stomatology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233040, China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui, 233000, China; School of Life Science, Bengbu Medical University, Bengbu, Anhui, 233000, China.
| |
Collapse
|
2
|
Reis-Prado AHD, Rahimnejad M, Dal-Fabbro R, Toledo PTAD, Anselmi C, Oliveira PHCD, Fenno JC, Cintra LTA, Benetti F, Bottino MC. Injectable thermosensitive antibiotic-laden chitosan hydrogel for regenerative endodontics. Bioact Mater 2025; 46:406-422. [PMID: 39850022 PMCID: PMC11754974 DOI: 10.1016/j.bioactmat.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/03/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025] Open
Abstract
Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The thermosensitivity, gelation kinetics, compressive strength, cytocompatibility, and antibacterial efficacy were evaluated according to well-established protocols. An in vivo model of periapical disease and evoked bleeding in rats' immature permanent teeth was performed to determine disinfection, tissue repair, and root formation. AZI was successfully incorporated into interconnected porous CH hydrogels, which retained their thermosensitivity. The mechanical and rheological findings indicated that adding AZI did not adversely affect the hydrogels' strength and injectability. Incorporating 3 % and 5 % AZI into the hydrogels led to minimal cytotoxic effects compared to higher concentrations while enhancing the antibacterial response against endodontic bacteria. AZI-laden hydrogel significantly decreased E. faecalis biofilm compared to the controls. Regarding tissue response, the 3 % AZI-laden hydrogel improved mineralized tissue formation and vascularization compared to untreated teeth and those treated with double antibiotic paste. Our findings demonstrate that adding 3 % AZI into CH hydrogels ablates infection and supports neotissue formation in vivo when applied to a clinically relevant model of regenerative endodontics.
Collapse
Affiliation(s)
- Alexandre Henrique dos Reis-Prado
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Priscila Toninatto Alves de Toledo
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Caroline Anselmi
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Morphology and Pediatric Dentistry, São Paulo State University (UNESP) - Araraquara School of Dentistry, Araraquara, SP, Brazil
| | - Pedro Henrique Chaves de Oliveira
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - J. Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Francine Benetti
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Huang TY, Naruphontjirakul P, Tseng SC, Su WT. Protective effect of conditioned medium derived from melatonin-stimulated stem cells from the apical papilla on glutamate-induced neurotoxicity in PC12 cells. Neuroscience 2025; 570:72-83. [PMID: 39965741 DOI: 10.1016/j.neuroscience.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/01/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Glutamate-induced neurotoxicity can be attenuated via paracrine mechanisms involving mesenchymal stem cells (MSCs). Conditioned medium (CM) from dental MSCs stimulates neuroprotective effects through trophic factors, and melatonin is a known enhancer of the efficacy of conditional media. Here, we investigated the protective effect of CM derived from stem cells from the apical papilla (SCAPs), supplemented without and with melatonin CM (SCAP-CM and Mel-CM), against glutamate-induced PC12 cell apoptosis via the inhibition of intracellular calcium influx and reactive oxygen species (ROS) production. The results showed that CM effectively reduced glutamate-induced intracellular calcium ion concentration, ROS production, and LDH levels in PC12 cells, elevated mitochondrial membrane potential, and inhibited Bax and Cytochrome c protein expression while increasing Bcl-2 protein expression. Moreover, CM significantly reduced the expression of caspase-9 and caspase-3 to inhibit glutamate-induced PC12 cell apoptosis. Notably, Mel-CM outperformed SCAP-CM in all aspects. This study demonstrates that melatonin can enhance the paracrine effects of stem cells and that Mel-CM mediates neuroprotection by inhibiting neuronal cell damage and apoptosis induced by glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei 104217, Taiwan
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Shih-Ching Tseng
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan.
| |
Collapse
|
4
|
Yang H, Yuan F, Song J, Huang Y, Shan Z, Fan Z. m 6A-Modified GATA2 Enhances Odontogenic Differentiation in Stem Cells from the Apical Papilla. Int J Mol Sci 2025; 26:2920. [PMID: 40243520 PMCID: PMC11988903 DOI: 10.3390/ijms26072920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Epigenetic modifications play a crucial role in regulating stem cell differentiation. Among these, N6-methyladenosine (m6A) modification significantly impacts mRNA stability and translation. However, its role in dental stem cell differentiation remains largely unexplored. Functional assays, including ALP activity, alizarin red S staining, qPCR, and Western blot, were conducted to assess odontogenic differentiation. Then, an in vivo dentin formation model was used to validate our findings. Additionally, we employed RNA stability assays and m6A site mutagenesis to investigate the regulatory mechanism of m6A modification in GATA2-mediated differentiation. Our results demonstrated that overexpression of GATA2 significantly promoted SCAP odontogenic differentiation. Moreover, in vivo studies confirmed that GATA2 overexpression enhances dentin formation in mouse models. Conversely, knockdown of GATA2 or mutation of its m6A sites led to reduced mRNA stability and decreased odontogenic differentiation. m6A modification is enriched in the 3' untranslated region (3'UTR) of GATA2 mRNA, regulating its stability and expression. Our findings indicate that m6A modification contributes to the post-transcriptional regulation of GATA2, enhancing its stability and promoting SCAP-mediated odontogenic differentiation and dentin formation. This study provides new insights into the epigenetic regulation of dental stem cells and suggests a potential molecular target for dental tissue regeneration.
Collapse
Affiliation(s)
- Haoqing Yang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100070, China; (H.Y.)
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Fengning Yuan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100054, China
| | - Jiaxin Song
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100070, China; (H.Y.)
| | - Yishu Huang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100054, China
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100070, China; (H.Y.)
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing 100054, China
| |
Collapse
|
5
|
Shimamura K, Nojiri T, Kondo H, Ikeda Y, Yasuhara R, Ida-Yonemochi H, Otsu K, Harada H, Mishima K, Ohshima H, Kobayashi T, Irié T. The potential role of chromodomain helicase DNA-binding protein 3 in defining the cervical width by regulating the early growth stage of the apical papilla during tooth development. J Oral Biosci 2025; 67:100604. [PMID: 39710094 DOI: 10.1016/j.job.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE This study aimed to evaluate the role of the chromodomain helicase DNA-binding protein 3 (CHD3) in tooth morphogenesis in Chd3 knockout mice. METHODS Chd3 knockout mice were generated using the CRISPR-Cas9 method. Mandibular first molars were extracted from the mice and their littermates and morphometrically analyzed. Subsequent histological and immunohistochemical analyses of teeth were performed at each developmental stage. Chd3 knockdown in mesenchymal cells from the dental papilla (mDP) and Hertwig's epithelial root sheath (HERS) was performed by Chd3 shRNA transduction or a control using an adenoviral vector. These effects were examined using cell proliferation assays and quantitative real-time polymerase chain reaction. RESULTS Narrowing of tooth cervical width was observed in mandibular first molars of Chd3 knockout mice. On postnatal day (PN) 8, the cervical width was narrow before root formation in tooth germs. The number of Ki-67-positive cells decreased in the dental mesenchyme at PN1 and apical papilla at PN8. Chd3 promoted the proliferation of dental mesenchymal cells, but no significant changes were observed in HERS epithelial cells. Chd3 maintained sonic hedgehog (Shh) expression and inhibited that of bone morphogenetic protein (Bmp)4 in dental mesenchymal cells, maintaining Shh and Wnt3a expression and inhibited that of Bmp2 in HERS epithelial cells. CONCLUSION Chd3 may regulate tooth cervical width during the early growth stage of the apical papilla via Shh, Bmp, and Wnt signaling.
Collapse
Affiliation(s)
- Kento Shimamura
- Division of Fixed Prosthodontics and Oral Implantology, Department of Prosthodontics, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan; Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Toshiki Nojiri
- Division of Fixed Prosthodontics and Oral Implantology, Department of Prosthodontics, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Hisatomo Kondo
- Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Aichi Gakuin University, 2-11, Suemoridori, Chikusa-ku, Nagoya, 464-8651, Japan
| | - Yunosuke Ikeda
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan; Division of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Reconstructive Surgery, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Takuya Kobayashi
- Division of Removable Prosthodontics and Oral Rehabilitation, Department of Prosthodontics, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, 020-8505, Japan
| | - Tarou Irié
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan.
| |
Collapse
|
6
|
Wang M, Wu Z, Zheng X, Huang Y, Jin Y, Song J, Lei W, Liu H, Yu R, Yang H, Gao R. Betaine enhances SCAPs chondrogenic differentiation and promotes cartilage repair in TMJOA through WDR81. Stem Cell Res Ther 2025; 16:55. [PMID: 39920811 PMCID: PMC11806766 DOI: 10.1186/s13287-025-04161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The cartilage tissue regeneration mediated with mesenchymal stem cells (MSCs) is considered as a viable strategy for temporomandibular joint osteoarthritis (TMJOA). Betaine has been confirmed to modulate the multidirectional differentiation of MSCs, while its effect on chondrogenic differentiation of Stem Cells from the Apical Papilla (SCAPs) is unknown. Here, we explored the effects and underlying mechanisms of betaine on chondrogenic differentiation of SCAPs. METHODS Betaine was added for SCAPs chondrogenic induction. The chondrogenic differentiation potential was assessed using Alcian Blue staining, Sirius Red staining and the main chondrogenic markers. In vivo cartilage regeneration effects were evaluated by the rat TMJOA model. RNA-sequencing and biological analyses were performed to select target genes and biological processes involved. The mechanism betaine acts on chondrogenic differentiation of SCAPs was further explored. RESULTS Betain-treated SCAPs demonstrated stronger cartilage regeneration in vitro and promoted cartilage repair of TMJOA in vivo. Betaine enhanced the expression of WDR81 in SCAPs during chondrogenesis. WDR81 overexpression promoted chondrogenic differentiation of SCAPs, while WDR81 depletion inhibited chondrogenic differentiation. In addition, both betaine treatment and WDR81 overexpression reduced intracellular reactive oxygen species levels and increased mitochondrial membrane potential in SCAPs. CONCLUSION Betaine promotes SCAPs chondrogenic differentiation and provided an effective candidate for TMJOA treatment. WDR81 may serve as the potential drug target through mitophagy.
Collapse
Affiliation(s)
- Meiyue Wang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zejie Wu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoyu Zheng
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yishu Huang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Yizhou Jin
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Jiaxin Song
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Wanzhen Lei
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Hua Liu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
| | - Riyue Yu
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100050, China.
| | - Haoqing Yang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Runtao Gao
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
7
|
Kim D, Kim SG. Cell Homing Strategies in Regenerative Endodontic Therapy. Cells 2025; 14:201. [PMID: 39936992 PMCID: PMC11817319 DOI: 10.3390/cells14030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Cell homing, a process that leverages the body's natural ability to recruit cells and repair damaged tissues, presents a promising alternative to cell transplantation methods. Central to this approach is the recruitment of endogenous stem/progenitor cells-such as those from the apical papilla, bone marrow, and periapical tissues-facilitated by chemotactic biological cues. Moreover, biomaterial scaffolds embedded with signaling molecules create supportive environments, promoting cell migration, adhesion, and differentiation for the regeneration of the pulp-dentin complex. By analyzing in vivo animal studies using cell homing strategies, this review explores how biomolecules and scaffold materials enhance the recruitment of endogenous stem cells to the site of damaged dental pulp tissue, thereby promoting repair and regeneration. It also examines the key principles, recent advancements, and current limitations linked to cell homing-based regenerative endodontic therapy, highlighting the interplay of biomaterials, signaling molecules, and their broader clinical implications.
Collapse
Affiliation(s)
- David Kim
- Center for Dental and Craniofacial Research, Columbia University College of Dental Medicine, New York, NY 10032, USA;
| | - Sahng G. Kim
- Division of Endodontics, Columbia University College of Dental Medicine, New York, NY 10032, USA
| |
Collapse
|
8
|
Chang MC, Chao YC, Chen YC, Chang HW, Zhong BH, Pan YH, Jeng JH, Chang HH. Bone morphogenetic protein-4 induced matrix turnover and osteogenic differentiation-related molecules of stem cells from apical papilla and its associated ALK/Smad signaling. J Dent Sci 2025; 20:646-659. [PMID: 39873078 PMCID: PMC11762932 DOI: 10.1016/j.jds.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms. Materials and methods SCAPs were exposed to BMP-4 with or without signal transduction inhibitors. Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. mRNA levels were quantified using real-time PCR. Protein expression in SCAPs was analyzed through immunofluorescent staining or western blotting. Cellular protein production was measured with enzyme-linked immunosorbent assay. Results BMP-4 induced suppressor of mother against decapentaplegic (Smad)1/5/8 and Smad2/3 phosphorylation and activation. It also promoted higher expression of osteogenic and odontogenic markers, including Osterix, N-cadherin, and secreted protein acidic and rich in cysteine (SPARC), in SCAPs. Additionally, BMP-4 stimulated connective tissue growth factor (CTGF), plasminogen activator inhibitor-1 (PAI-1), and urokinase plasminogen activator receptor (uPAR) expression, but inhibited uPA expression and production in SCAPs, indicating its role in matrix remodeling and cell migration. Inhibition of Smad2/3 with SB431542 and Smad1/5/8 with LDN193189 attenuated the BMP-4-induced expression Osx, N-cadherin, CTGF, SPARC, uPAR and PAI-1. Conclusion These results indicate that BMP-4 stimulates the osteogenic and odontogenic differentiation of SCAPs by regulating matrix turnover and mineralization-related proteins. Furthermore, these processes are associated with the induction of Smad2/3 and Smad1/5/8 of SCAPs by BMP-4.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Chi Chao
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chieh Chen
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bor-Hao Zhong
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsiao-Hua Chang
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Jalilvand M, Khoshbin E, Barabadi Z, Karkehabadi H, Sharifi E. Fabrication and characterization of nanocomposite scaffold containing zinc-doped mesoporous bioglass: Evaluation of the antioxidant properties, hemocompatibility and proliferation of apical papilla stem cells. BIOIMPACTS : BI 2024; 15:30300. [PMID: 40161949 PMCID: PMC11954743 DOI: 10.34172/bi.30300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 04/21/2024] [Indexed: 04/02/2025]
Abstract
Introduction Nanocomposite scaffolds comprising mesoporous bioactive glass (MBG) were able to increase the viability, proliferation, and growth of stem cells in vitro, rendering them promising candidates for dental root tissue regeneration. Methods The Sol-Gel process was utilized for the synthesis of MBG and zinc-doped MBG (Zn-MBG), the latter being integrated into alginate/chitosan scaffolds which in turn were cross-linked to strengthen mechanical properties, followed by freeze-drying. The scaffold's physicochemical characterizations were evaluated, followed by investigations of its antioxidant properties, swelling behavior, mechanical properties, and porosity. The capacity of these biomaterials to increase cell viability and growth of apical papilla stem cells (SCAPs) and hemocompatibility was assessed as a final step. Results All fabricated scaffolds demonstrated proper porosity, biocompatibility, and hemocompatibility. Nanocomposite scaffolds with Zn-MBG presented a significant enhancement in cell viability for SCAPs compared to alginate/chitosan scaffolds. DPPH tests indicated that the Zn-MBG-alginate/chitosan scaffold showed the highest antioxidant properties. Conclusion Zn-MBG-alginate/chitosan nanocomposite scaffolds demonstrated great physicochemical characteristics and biological and mechanical properties, marking them as suitable candidates for dental root tissue engineering.
Collapse
Affiliation(s)
- Morteza Jalilvand
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Khoshbin
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Barabadi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Hristov K, Ishkitiev N, Miteva M, Dimitrova V, Gigova R, Gateva N, Angelova L. The effect of citric acid on mineralisation and vascular endothelial growth factor secretion from apical papilla stem cells. Acta Odontol Scand 2024; 83:546-552. [PMID: 39351898 PMCID: PMC11457356 DOI: 10.2340/aos.v83.42026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVE To investigate the influence of citric acid on the osteogenic and angiogenic potential of stem cells from apical papillae (SCAPs). MATERIALS AND METHODS Stem cells from apical papillae were isolated from freshly extracted third permanent molars. These cells were treated with 20 and 100 μM citric acid. Alizarin red staining was used to evaluate mineral deposition. The secreted levels of vascular endothelial growth factor (VEGF) were assessed by ELISA on days 18, 24 and 28. Immunofluorescence analysis was performed to assess the expression of surface markers after exposure to 20 and 100 μM citric acid. RESULTS Different mineralisation patterns were observed. Supplemented with citric acid, media showed more diffuse and less dense crystals. On day 18, most VEGF was secreted from the cells with no added citric acid. On day 24, there was a significant increase (p < 0.05) in the levels of VEGF secreted from cells treated with 20 μM citric acid. On day 28, cells from the control group did not secrete VEGF. There was a reduction in the levels of VEGF secreted by cells treated with 20 μM citric acid and a significant increase in the cells exposed to 100 μM citric acid (p < 0.05). CONCLUSION Citric acid can promote the differentiation of SCAPs and angiogenesis.
Collapse
Affiliation(s)
- Krasimir Hristov
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | - Nikolay Ishkitiev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Marina Miteva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Violeta Dimitrova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Ralitsa Gigova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Nataliya Gateva
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Liliya Angelova
- Department of Dental Public Health, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
11
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
12
|
Huang Q, Sun Y, Huang W, Zhang F, He H, He Y, Huang F. FTO Positively Regulates Odontoblastic Differentiation via SMOC2 in Human Stem Cells from the Apical Papilla under Inflammatory Microenvironment. Int J Mol Sci 2024; 25:4045. [PMID: 38612855 PMCID: PMC11012055 DOI: 10.3390/ijms25074045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.
Collapse
Affiliation(s)
- Qi Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yumei Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wushuang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fuping Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
13
|
Smoczer C, Park YK, Herrington JB, Askar MA, Plecha S, Krukonis E, Paurazas SB. A Potential Intracanal Medicament, 2-Hydroxyisocaproic Acid (HICA): Cytotoxicity, Genotoxicity, and Its Effect on SCAP Differentiation. Dent J (Basel) 2023; 11:270. [PMID: 38132408 PMCID: PMC10743052 DOI: 10.3390/dj11120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Intracanal medicaments with maximal antimicrobial efficacy and minimal damage to resident stem cells are essential for successful regenerative endodontic procedures. 2-Hydroxyisocaproic acid (HICA) could have the attributes of a potential intracanal medicament. This study evaluates its cytotoxicity, genotoxicity, and effects on the odontogenic and osteogenic differentiation of the stem cells of the apical papilla (SCAP). Cytotoxicity and cell viability assays were performed on cells treated for 24, 48, and 72 h with varying concentrations of HICA and compared to the standard intracanal medicament, calcium hydroxide. The genotoxicity was assessed via immunofluorescence for two markers of DNA double-strand breaks: phosphorylated γH2AX and 53BP1. The SCAP differentiation was evaluated based on the alkaline phosphatase activity, Alizarin Red staining, and expression of odontogenic and osteogenic genes (DSPP1, BSP1, OCN, RUNX2) in the presence of selected HICA concentrations. HICA was not cytotoxic at concentrations up to 10 mg/mL, regardless of the exposure time, although it was cytostatic at all tested concentrations. HICA was not genotoxic at concentrations below 5 mg/mL. No difference in cytotoxicity or genotoxicity was found between HICA and calcium hydroxide at 1 mg/mL. HICA retained about 70% of the osteogenic differentiation potential at 1 mg/mL. Within the limitations of this in vitro study, we show that HICA at 1 mg/mL could be a potential intracanal medicament for REPs.
Collapse
Affiliation(s)
- Cristine Smoczer
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA; (C.S.); (S.P.); (E.K.)
| | - Yun K. Park
- Graduate Endodontics, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA (M.A.A.)
| | - James B. Herrington
- Graduate Endodontics, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA (M.A.A.)
| | - Mazin A. Askar
- Graduate Endodontics, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA (M.A.A.)
| | - Sarah Plecha
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA; (C.S.); (S.P.); (E.K.)
| | - Eric Krukonis
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA; (C.S.); (S.P.); (E.K.)
| | - Susan B. Paurazas
- Graduate Endodontics, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA (M.A.A.)
| |
Collapse
|