Song JH, Tomihama RT, Roh D, Cabrera A, Dardik A, Kiang SC. Leveraging Artificial Intelligence to Optimize the Care of Peripheral Artery Disease Patients.
Ann Vasc Surg 2024;
107:48-54. [PMID:
38582202 DOI:
10.1016/j.avsg.2023.11.057]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 04/08/2024]
Abstract
Peripheral artery disease is a major atherosclerotic disease that is associated with poor outcomes such as limb loss, cardiovascular morbidity, and death. Artificial intelligence (AI) has seen increasing integration in medicine, and its various applications can optimize the care of peripheral artery disease (PAD) patients in diagnosis, predicting patient outcomes, and imaging interpretation. In this review, we introduce various AI applications such as natural language processing, supervised machine learning, and deep learning, and we analyze the current literature in which these algorithms have been applied to PAD.
Collapse