1
|
Kulikov AA, Naumova AA, Sokolova YO, Suponin AA, Krasnov KA, Nikolaeva SD, Chernigovskaya EV, Bazhanova ED, Glazova MV. p53 inhibition during audiogenic kindling in Krushinsky-Molodkina rats attenuates seizure severity and prevents neurodegeneration in the hippocampus. Neuroscience 2025; 574:138-151. [PMID: 40210194 DOI: 10.1016/j.neuroscience.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
In the present study, we analyzed the effects of the p53 inhibitor pifithrin-α (PFT) on the expression of brainstem audiogenic seizures (AGS) and limbic seizures in Krushinsky-Molodkina (KM) rats genetically prone to AGS. To reproduce limbic/mesial temporal lobe epilepsy (TLE)-like condition in KM rats, we used repetitive AGS stimulations (audiogenic kindling) during 14 days. In parallel with AGS stimulations, KM rats received daily intraperitoneal injections of PFT. Our data demonstrated that PFT treatment significantly decreased the duration and severity of both brainstem AGS and limbic seizures. In addition, PFT partially prevented the kindling-induced neurodegeneration and activation of apoptotic mechanisms in the hippocampus of KM rats. Moreover, PFT treatment led to the persistent upregulation of anti-apoptotic Bcl-2, along with GluA2 and GluN2A, glutamate receptor subunits which are involved into the mechanisms supporting cell survival and preventing neuronal hyperexcitability. Altogether, our data confirm that p53 can be considered as a perspective target for the development of novel strategies to mitigate seizure activity and avert its deleterious consequences.
Collapse
Affiliation(s)
- Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Yulia O Sokolova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Andrey A Suponin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Konstantin A Krasnov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Elena D Bazhanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
2
|
Ilin S, Borodacheva J, Shamsiev I, Bondar I, Shichkina Y. Temporal action localisation in video data containing rabbit behavioural patterns. Sci Rep 2025; 15:5710. [PMID: 39962237 PMCID: PMC11832728 DOI: 10.1038/s41598-025-89687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
In this paper we present the results of a research on artificial intelligence based approaches to temporal action localisation in video recordings of rabbit behavioural patterns. When using the artificial intelligence, special attention should be paid to quality and quantity of data collected for the research. Conducting the experiments in science may take long time and involve expensive preparatory work. Artificial intelligence based approaches can be applied to different kinds of actors in the video including animals, humans, intelligent agents, etc. The peculiarities of using these approaches in specific research conditions can be of particular importance for project cost reduction. In this paper we analyze the peculiarities of using the frame-by-frame classification based approach to temporal localisation of rabbit actions in video data and propose a metric for evaluating its consistency. The analysis of existing approaches described in the literature indicates that the aforementioned approach has high accuracy (up to 99%) and F1 score of temporal action localisation (up to 0.97) thus fulfilling conditions for substantial reduction or total exclusion of manual data labeling from the process of studying actor behaviour patterns in video data collected in experimental setting. We conducted further investigation in order to determine the optimal number of manually labeled frames required to achieve 99% accuracy of automatic labeling and studied the dependence of labeling accuracy on the number of actors presented in the training data.
Collapse
Affiliation(s)
- Semyon Ilin
- Saint Petersburg Electrotechnical University "LETI", Faculty of Computer Science and Technology, Saint Petersburg, 197022, Russian Federation
| | - Julia Borodacheva
- Institute of Higher Nervous Activity and Neurophysiology, RAS, Moscow, 117485, Russian Federation
| | - Ildar Shamsiev
- Institute of Higher Nervous Activity and Neurophysiology, RAS, Moscow, 117485, Russian Federation
| | - Igor Bondar
- Institute of Higher Nervous Activity and Neurophysiology, RAS, Moscow, 117485, Russian Federation
| | - Yulia Shichkina
- Saint Petersburg Electrotechnical University "LETI", Faculty of Computer Science and Technology, Saint Petersburg, 197022, Russian Federation.
| |
Collapse
|
3
|
Aleksandrova EP, Ivlev AP, Kulikov AA, Naumova AA, Glazova MV, Chernigovskaya EV. Aging of Krushinsky-Molodkina audiogenic rats is accompanied with pronounced neurodegeneration and dysfunction of the glutamatergic system in the hippocampus. Brain Res 2024; 1846:149294. [PMID: 39461667 DOI: 10.1016/j.brainres.2024.149294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Advancing age strongly correlates with an increased risk of epilepsy development. On the other hand, epilepsy may exacerbate the negative effects of aging making it pathological. In turn, the possible link between aging and epileptogenesis is dysregulation of glutamatergic transmission. In the present study, we analyzed the functional state of the glutamatergic system in the hippocampus of aging (18-month-old) Krushinsky-Molodkina (KM) audiogenic rats to disclose alterations associated with aging on the background of inherited predisposition to audiogenic seizures (AGS). Naïve KM rats with no AGS experience were recruited in the experiments. Wistar rats of the corresponding age were used as a control. First of all, aging KM rats demonstrated a significant decrease in cell population and synaptopodin expression in the hippocampus indicating enhanced loss of cells and synapses. Meanwhile, elevated phosphorylation of ERK1/2 and CREB and increased glutamate in the neuronal perikarya were revealed indicating increased activity of the rest hippocampal cells and increased glutamate production. However, glutamate in the fibers and synapses was mainly unchanged, and the proteins regulating glutamate exocytosis showed variable changes which could compensate each other and maintain glutamate release at the unchanged level. In addition, we revealed downregulation of NMDA-receptor subunit GluN2B and upregulation of AMPA-receptor GluA2 subunit, which could also prevent overexcitation and support cell survival in the hippocampus of aging KM rats. Nevertheless, abnormally high glutamate production, observed in aging KM rats, may provide the basis for hyperexcitability of the hippocampus and increased seizure susceptibility in old age.
Collapse
Affiliation(s)
- Ekaterina P Aleksandrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Andrey P Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
4
|
Samra AI, Kamel AS, Abdallah DM, El Fattah MAA, Ahmed KA, El-Abhar HS. Preclinical Evidence for the Role of the Yin/Yang Angiotensin System Components in Autism Spectrum Disorder: A Therapeutic Target of Astaxanthin. Biomedicines 2023; 11:3156. [PMID: 38137376 PMCID: PMC10740500 DOI: 10.3390/biomedicines11123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) prevalence is emerging with an unclear etiology, hindering effective therapeutic interventions. Recent studies suggest potential renin-angiotensin system (RAS) alterations in different neurological pathologies. However, its implications in ASD are unexplored. This research fulfills the critical gap by investigating dual arms of RAS and their interplay with Notch signaling in ASD, using a valproic acid (VPA) model and assessing astaxanthin's (AST) modulatory impacts. Experimentally, male pups from pregnant rats receiving either saline or VPA on gestation day 12.5 were divided into control and VPA groups, with subsequent AST treatment in a subset (postnatal days 34-58). Behavioral analyses, histopathological investigations, and electron microscopy provided insights into the neurobehavioral and structural changes induced by AST. Molecular investigations of male pups' cortices revealed that AST outweighs the protective RAS elements with the inhibition of the detrimental arm. This established the neuroprotective and anti-inflammatory axes of RAS (ACE2/Ang1-7/MasR) in the ASD context. The results showed that AST's normalization of RAS components and Notch signaling underscore a novel therapeutic avenue in ASD, impacting neuronal integrity and behavioral outcomes. These findings affirm the integral role of RAS in ASD and highlight AST's potential as a promising treatment intervention, inviting further neurological research implications.
Collapse
Affiliation(s)
- Ayat I. Samra
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (A.I.S.); (D.M.A.); (M.A.A.E.F.)
| | - Ahmed S. Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (A.I.S.); (D.M.A.); (M.A.A.E.F.)
| | - Dalaal M. Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (A.I.S.); (D.M.A.); (M.A.A.E.F.)
| | - Mai A. Abd El Fattah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (A.I.S.); (D.M.A.); (M.A.A.E.F.)
| | - Kawkab A. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo 11562, Egypt;
| | - Hanan S. El-Abhar
- Pharmacology, Toxicology, and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt;
| |
Collapse
|