1
|
Ren Q, Tian T, Wang B, Pan J, Huang Y, Zhong L, Wang Y, Wang X, Huang X. UVA-responsive Fe₃O₄@ZnO nanocarrier grafted with anti-EGFR antibody for precision delivery of Nrf2-siRNA and brusatol: A novel platform for integrated photodynamic, gene, and chemotherapy. Int J Biol Macromol 2025; 305:141153. [PMID: 39971059 DOI: 10.1016/j.ijbiomac.2025.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Photodynamic therapy (PDT) remains underutilized as a primary cancer treatment due to the limited lethality of reactive oxygen species (ROS) and poor targeting efficiency of traditional photosensitizers. This the aim of the study is to develop a Fe₃O₄@ZnO nanoparticle photosensitizer co-loaded with anti-EGFR antibody, brusatol, and Nrf2-siRNA to improve the therapeutic effect of PDT. This system can be guided to tumors by a magnetic field and further targets cancer cells through EGFR-specific binding. Under UVA light, brusatol and Nrf2-siRNA are released, enabling combined chemo-, gene, and photodynamic therapy. With the photosensitizer treatment, ROS levels in cutaneous squamous cell carcinoma cells were elevated by 191.09 ± 10.02 % through suppression of Nrf2 and its associated antioxidant defenses, significantly enhancing cell lethality and reducing cell viability by 80.43 ± 9.37 %. In vivo studies further demonstrated a tumor suppression rate of 76.30 ± 5.12 % in nude mice, highlighting the robust anti-tumor efficacy of the photosensitizer and its potential for clinical application in targeted cancer therapy. The biocompatibility and high therapeutic efficacy of this photosensitizer highlight its promise as a safer and more effective option for treating cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Qian Ren
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China; Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Tingting Tian
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China
| | - Bin Wang
- Obesity and Metabolic Diseases Research Center, Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, PR China
| | - Li Zhong
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yehong Wang
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China
| | - Xia Wang
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|
2
|
Hu S, Sun D, Tang L, Kong L, Liu Y, Liu F, Tang D, Lu X, Wang Y. Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Int J Pharm 2025; 672:125334. [PMID: 39933608 DOI: 10.1016/j.ijpharm.2025.125334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION The silent killer epithelial ovarian cancer (EOC) is a lethal malignancy with high mortality rate and often diagnosed at an advanced stage. Traditional chemotherapy for EOC remains unsatisfactory as the tumor microenvironment (TME) is complicated and contains multiple factors such as tumor associated macrophages (TAMs). Therefore, a drug delivery system which codelivery chemotherapy drug and immune modulator for EOC treatment is urgently needed. METHODS Follicle-stimulating hormone peptide-conjugated paclitaxel and ginsenoside Rh2 codelivery liposomes (FSH@PTX-Rh2-Lips) were prepared in this study. FSH was decorated on the liposomal surface to enhance cellar uptake, PTX was used to kill cancer cells, and Rh2 was added to induce macrophages repolarization as well as a member material. The targeting, anti-tumor effect and impact on macrophage repolarization of FSH@PTX-Rh2-Lips were evaluated in vitro and in vivo. RESULTS With the ideal physicochemical properties, FSH@PTX-Rh2-Lips displayed increased cellular uptake, strong cytotoxicity to ID8 cells, inhibitory effect of tumor cell metastasis, and ability to induce macrophage repolarization from M2 to M1 in vitro. The tumor-bearing mice model suggested FSH@PTX-Rh2-Lips showed significant effect on antitumor and tumor recurrence, and the mechanism of FSH@PTX-Rh2-Lips in treatment of EOC was related to inhibiting tumor growth and inducing macrophage repolarization. CONCLUSION FSH@PTX-Rh2-Lips with function of affecting TAMs repolarization and altering the TME were successfully prepared and might offer an effective therapeutic strategy against EOC.
Collapse
Affiliation(s)
- Shengxia Hu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Dan Sun
- Department of Obstetrics and Gynecology, Dalian Women and Children's Medical Center (Group), Dalian, People's Republic of China
| | - Ling Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Fang Liu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Dongmei Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Xuhong Lu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.
| | - Yuanyuan Wang
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.
| |
Collapse
|
3
|
Jinjin W, De J, Qin Z. Research Progress on Reproductive Toxicity and Reversibility of Tripterygium wilfordii Based on Gender Differences. Pharmacogn Mag 2025. [DOI: 10.1177/09731296251313623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
Tripterygium wilfordii Hook F. (TwHF), a member of the Celastraceae family and belonging to the genus Tripterygium, is a vine-like shrub. It contains numerous active components, such as Tripterygium glycosides (GTW) and triptolide (TP), widely known for their significant reproductive toxicity. This toxicity is characterized by its detrimental effects on the testes and ovaries, leading to reduced libido, apoptosis of germ and follicle cells, and abnormal secretion of sex hormones. Thus, it is necessary to explore the mechanisms behind TwHF’s reproductive toxicity, which will lead to advancements in detoxification and efficacy enhancement strategies. This article offers a comprehensive overview and analysis of the research conducted on reproductive toxicity and its reversibility induced by TwHF, aiming to provide a reference for its rational use in clinical settings.
Collapse
Affiliation(s)
- Wang Jinjin
- Department of Nephrology, Organization Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jin De
- Department of Nephrology, Organization Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhu Qin
- Department of Nephrology, Organization Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Tong Z, Jie X, Chen Z, Deng M, Li X, Zhang Z, Pu F, Xie Z, Xu Z, Wang P. Borneol and lactoferrin dual-modified crocetin-loaded nanoliposomes enhance neuroprotection in HT22 cells and brain targeting in mice. Eur J Med Chem 2024; 276:116674. [PMID: 39004017 DOI: 10.1016/j.ejmech.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Crocetin (CCT), a natural bioactive compound extracted and purified from the traditional Chinese medicinal herb saffron, has been shown to play a role in neurodegenerative diseases, particularly depression. However, due to challenges with solubility, targeting, and bioavailability, formulation development and clinical use of CCT are severely limited. In this study, we used the emulsification-reverse volatilization method to prepare CCT-loaded nanoliposomes (CN). We further developed a borneol (Bor) and lactoferrin (Lf) dual-modified CCT-loaded nanoliposome (BLCN) for brain-targeted delivery of CCT. The results of transmission electron microscope (TEM) and particle size analysis indicated that the size of BLCN (∼140 nm) was suitable for transcellular transport across olfactory axons (∼200 nm), potentially paving a direct path to the brain. Studies on lipid solubility, micropolarity, and hydrophobicity showed that BLCN had a relatively high Lf grafting rate (81.11 ± 1.33 %) and CCT entrapment efficiency (83.60 ± 1.04 %) compared to other liposomes, likely due to Bor improving the lipid solubility of Lf, and the combination promoting the orderly arrangement of liposome membrane molecules. Microplate reader and fluorescence microscopy analysis showed that BLCN efficiently promoted the endocytosis of fluorescent coumarin 6 into HT22 cells with a maximal fluorescence intensity of (13.48 ± 0.80 %), which was significantly higher than that of CCT (5.73 ± 1.17 %) and CN (12.13 ± 1.01 %). BLCN also exhibited sustained function, remaining effective for more than 12 h after reaching a peak at 1 h in cells, while CN showed a significant decrease after 4 h. The uptake mechanisms of BLCN in HT22 cells mainly involve energy-dependent, caveolae-mediated, and microtubule-mediated endocytosis, as well as micropinocytosis. Furthermore, BLCN displayed a significant neuroprotective effect on HT22 cells in glutamate-, corticosterone-, and H2O2-induced models. Tissue fluorescence image analysis of mice showed that BLCN exhibited substantial retention of fluorescent DiR in the brain after nasal administration for 12 h. These findings suggest that CCT has the potential for cellular uptake, neuroprotection, and targeted delivery to the brain following intranasal administration when encapsulated in Bor and Lf dual-modified nanoliposomes.
Collapse
Affiliation(s)
- Zheren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaolu Jie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingtao Deng
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China
| | - Xin Li
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China
| | - Zhiwen Zhang
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China
| | - Faxiang Pu
- Zhejiang Suichang Liming Pharmaceutical Co., LTD, Suichang, 323300, China
| | - Zhangfu Xie
- Zhejiang Suichang Liming Pharmaceutical Co., LTD, Suichang, 323300, China
| | - Zijin Xu
- Department of Pharmacy, Jiangxi Medical College, Shangrao, 334000, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Zhang D, Zhai B, Sun J, Cheng J, Zhang X, Guo D. Advances on Delivery System of Active Ingredients of Dried Toad Skin and Toad Venom. Int J Nanomedicine 2024; 19:7273-7305. [PMID: 39050871 PMCID: PMC11268768 DOI: 10.2147/ijn.s469742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
7
|
Zhang YB, Wang JF, Wang MX, Peng J, Kong XD, Tian J. Nano-based drug delivery systems for active ingredients from traditional Chinese medicine: Harnessing the power of nanotechnology. Front Pharmacol 2024; 15:1405252. [PMID: 38910887 PMCID: PMC11190311 DOI: 10.3389/fphar.2024.1405252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction: Traditional Chinese medicine (TCM) is gaining worldwide popularity as a complementary and alternative medicine. The isolation and characterization of active ingredients from TCM has become optional strategies for drug development. In order to overcome the inherent limitations of these natural products such as poor water solubility and low bioavailability, the combination of nanotechnology with TCM has been explored. Taking advantage of the benefits offered by the nanoscale, various drug delivery systems have been designed to enhance the efficacy of TCM in the treatment and prevention of diseases. Methods: The manuscript aims to present years of research dedicated to the application of nanotechnology in the field of TCM. Results: The manuscript discusses the formulation, characteristics and therapeutic effects of nano-TCM. Additionally, the formation of carrier-free nanomedicines through self-assembly between active ingredients of TCM is summarized. Finally, the paper discusses the safety behind the application of nano-TCM and proposes potential research directions. Discussion: Despite some achievements, the safety of nano-TCM still need special attention. Furthermore, exploring the substance basis of TCM formulas from the perspective of nanotechnology may provide direction for elucidating the scientific intension of TCM formulas.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Tian
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
8
|
Yang M, Jiang G, Li Y, Chen W, Zhang S, Wang R. Paeoniflorin loaded liposomes modified with glycyrrhetinic acid for liver-targeting: preparation, characterization, and pharmacokinetic study. Pharm Dev Technol 2024; 29:176-186. [PMID: 38376879 DOI: 10.1080/10837450.2024.2319738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE To enhance the retention times and therapeutic efficacy of paeoniflorin (PF), a liver-targeted drug delivery system has been developed using glycyrrhetinic acid (GA) as a ligand. SIGNIFICANCE The development and optimization of GA-modified PF liposomes (GPLs) have shown promising potential for targeted delivery to the liver, opening up new possibilities for liver disease treatment. METHODS This study aimed to identify the best prescriptions using single-factor experiments and response surface methodology. The formulation morphology was determined using transmission electron microscopy. Tissue distribution was observed through in vivo imaging, and pharmacokinetic studies were conducted. RESULTS The results indicated that GPLs, prepared using the thin film dispersion method and response surface optimization, exhibited well-dispersed and uniformly sized particles. The in vitro release rate of GPLs was slower compared to PF monomers, suggesting a sustained release effect. The liver-targeting ability of GA resulted in stronger fluorescence signals in the liver for targeted liposomes compared to non-targeted liposomes. Furthermore, pharmacokinetic studies demonstrated that GPLs significantly prolonged the residence time of PF in the bloodstream, thereby contributing to prolonged efficacy. CONCLUSION These findings suggest that GPLs are more effective than PF monomers in terms of controlling drug release and delivering drugs to specific targets, highlighting the potential of PF as a liver-protective drug.
Collapse
Affiliation(s)
- Menghuan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Gang Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yumeng Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shantang Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, China
| | - Rulin Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|