1
|
Shao Y, Chen C, Yu X, Yan J, Guo J, Ye G. Comprehensive analysis of scRNA-seq and bulk RNA-seq data via machine learning and bioinformatics reveals the role of lysine metabolism-related genes in gastric carcinogenesis. BMC Cancer 2025; 25:644. [PMID: 40205350 PMCID: PMC11984278 DOI: 10.1186/s12885-025-14051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a highly aggressive and heterogeneous cancer with extremely complex biological characteristics. Lysine and its metabolism are closely related to human cancer, but little is known about how lysine metabolism-related genes contribute to gastric carcinogenesis. METHODS The roles of lysine metabolism-related genes in GC were investigated by in-depth analysis of single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) data via machine learning and multiple bioinformatics methods and confirmed by multiple cell and molecular biology methods. RESULTS By systematically analyzing the heterogeneity of GC cells and interactions among cell subtypes, two key genes, solute carrier family 7 member 7 (SLC7A7) and vimentin (VIM), were innovatively identified as lysine metabolism-related genes involved in gastric carcinogenesis. The potential functional mechanisms involved immune infiltration, signaling pathway regulation, drug sensitivity, molecular regulatory networks, tumor regulatory genes, and metabolic pathways. A reliable prognostic risk nomogram was established for GC prognosis prediction. Moreover, the expression of the lysine metabolism-related genes SLC7A7 and VIM and their effect on cellular phenotypes in gastric carcinogenesis were verified in clinical samples and in vitro experiments, including cell proliferation, migration, invasion and cell cycle assays. CONCLUSIONS We explored the role of lysine metabolism-related genes and prognostic models in GC with multiple datasets, providing novel metabolic targets.
Collapse
Affiliation(s)
- Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Chujia Chen
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xuan Yu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
| | - Junming Guo
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
2
|
Wang H, Yang R, Chen N, Li X. Heterogeneity of Neutrophils and Immunological Function in Neonatal Sepsis: Analysis of Molecular Subtypes Based on Hypoxia-Glycolysis-Lactylation. Mediators Inflamm 2025; 2025:5790261. [PMID: 40177399 PMCID: PMC11964727 DOI: 10.1155/mi/5790261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Objective: Hypoxia-glycolysis-lactylation (HGL) may play a crucial role in neonatal sepsis (NS). This study aims to identify HGL marker genes in NS and explore immune microenvironment among NS subtypes. Materials and Methods: The gene expression dataset GSE69686, comprising 64 NS cases and 85 controls, was selected for analysis. Based on the screened HGL-related marker genes, diagnostic prediction models were constructed using nine machine learning algorithms, and molecular subtypes of NS were identified through consensus clustering. Subsequently, the heterogeneity of biological functions and immune cell infiltration among the different subtypes was analyzed. Finally, the marker genes and lactylation were validated using the GSE25504 dataset, clinical samples, and mouse neutrophil, respectively. Results: MERTK, HK3, PGK1, and STAT3 were identified and validated as marker genes, and the diagnostic prediction model for NS constructed using the support vector machine (SVM) algorithm exhibited optimal predictive performance. Based on gene expression patterns, two distinct NS subtypes were identified. Functional enrichment analysis highlighted significant immune-related pathways, while immune infiltration analysis revealed differences in neutrophil proportions between the subtypes. Furthermore, the expression levels of marker genes were positively correlated with neutrophil infiltration. Importantly, the experimental validation results were consistent with the findings from the bioinformatics analysis. Conclusion: This study identified the distinct NS subtypes and their associated marker genes. These findings will contribute to elucidating the disease's heterogeneity and establishing appropriate personalized therapeutic approaches.
Collapse
Affiliation(s)
- Huabin Wang
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Jining Key Laboratory for Prevention and Treatment of Severe Infection in Children, Affiliated Hospital of Jining Medical University, Jining, China
- Shandong Provincial Key Medical and Health Discipline of Pediatric Internal Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ru Yang
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Jining Key Laboratory for Prevention and Treatment of Severe Infection in Children, Affiliated Hospital of Jining Medical University, Jining, China
- Shandong Provincial Key Medical and Health Discipline of Pediatric Internal Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Nan Chen
- Department of Graduate Education, Kunming Medical University, Kunming, China
| | - Xiang Li
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Wang W, Wang H, Wang Q, Yu X, Ouyang L. Lactate-induced protein lactylation in cancer: functions, biomarkers and immunotherapy strategies. Front Immunol 2025; 15:1513047. [PMID: 39867891 PMCID: PMC11757118 DOI: 10.3389/fimmu.2024.1513047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Lactate, long viewed as a byproduct of glycolysis and metabolic waste. Initially identified within the context of yogurt fermentation, lactate's role extends beyond culinary applications to its significance in biochemical processes. Contemporary research reveals that lactate functions not merely as the terminal product of glycolysis but also as a nexus for initiating physiological and pathological responses within the body. Lysine lactylation (Kla), a novel post-translational modification (PTM) of proteins, has emerged as a pivotal mechanism by which lactate exerts its regulatory influence. This epigenetic modification has the potential to alter gene expression patterns, thereby impacting physiological and pathological processes. Increasing evidence indicates a correlation between lactylation and adverse prognosis in various malignancies. Consequently, this review article aims to encapsulate the proteins that interact with lactate, elucidate the role of lactylation in tumorigenesis and progression, and explore the potential therapeutic targets afforded by the modulation of lactylation. The objective of this review is to clarify the oncogenic significance of lactylation and to provide a strategic framework for future research directions in this burgeoning field.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Hong Wang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Qi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Xiaojing Yu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
4
|
Xia RJ, Du XY, Shen LW, Ma JG, Xu SM, Fan RF, Qin JW, Yan L. Roles of the tumor microenvironment in the resistance to programmed cell death protein 1 inhibitors in patients with gastric cancer. World J Gastrointest Oncol 2024; 16:3820-3831. [PMID: 39350980 PMCID: PMC11438768 DOI: 10.4251/wjgo.v16.i9.3820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the continuous developments and advancements in the treatment of gastric cancer (GC), which is one of the most prevalent types of cancer in China, the overall survival is still poor for most patients with advanced GC. In recent years, with the progress in tumor immunology research, attention has shifted toward immunotherapy as a therapeutic approach for GC. Programmed cell death protein 1 (PD-1) inhibitors, as novel immunosuppressive medications, have been widely utilized in the treatment of GC. However, many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy. To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy, to maximize the clinical activity of immunosuppressive drugs, and to elicit a lasting immune response, it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients. This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment, aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.
Collapse
Affiliation(s)
- Ren-Jie Xia
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Xiao-Yu Du
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Li-Wen Shen
- Department of Medical Support Center, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Guo Ma
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Shu-Mei Xu
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Rui-Fang Fan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Wei Qin
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Long Yan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
5
|
Elimam H, Abdel Mageed SS, Hatawsh A, Moussa R, Radwan AF, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Mohammed OA, Zaki MB, Doghish AS. Unraveling the influence of LncRNA in gastric cancer pathogenesis: a comprehensive review focus on signaling pathways interplay. Med Oncol 2024; 41:218. [PMID: 39103705 DOI: 10.1007/s12032-024-02455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Gastric cancers (GCs) are among the most common and fatal malignancies in the world. Despite our increasing understanding of the molecular mechanisms underlying GC, further biomarkers are still needed for more in-depth examination, focused prognosis, and treatment. GC is one among the long non-coding RNAs, or lncRNAs, that have emerged as key regulators of the pathophysiology of cancer. This comprehensive review focuses on the diverse functions of long noncoding RNAs (lncRNAs) in the development of GC and their interactions with important intracellular signaling pathways. LncRNAs affect GC-related carcinogenic signaling cascades including pathways for EGFR, PI3K/AKT/mTOR, p53, Wnt/β-catenin, JAK/STAT, Hedgehog, NF-κB, and hypoxia-inducible factor. Dysregulated long non-coding RNA (lncRNA) expression has been associated with multiple characteristics of cancer, such as extended growth, apoptosis resistance, enhanced invasion and metastasis, angiogenesis, and therapy resistance. For instance, lncRNAs such as HOTAIR, MALAT1, and H19 promote the development of GC via altering these pathways. Beyond their main roles, GC lncRNAs exhibit potential as diagnostic and prognostic biomarkers. The overview discusses CRISPR/Cas9 genome-modifying methods, antisense oligonucleotides, small molecules, and RNA interference as potential therapeutic approaches to regulate the expression of long noncoding RNAs (lncRNAs). An in-depth discussion of the intricate functions that lncRNAs play in the development of the majority of stomach malignancies is provided in this review. It provides the groundwork for future translational research in lncRNA-based whole processes toward GC by highlighting their carcinogenic effects, regulatory roles in significant signaling cascades, and practical scientific uses as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
6
|
Jiao Y, Ji F, Hou L, Lv Y, Zhang J. Lactylation-related gene signature for prognostic prediction and immune infiltration analysis in breast cancer. Heliyon 2024; 10:e24777. [PMID: 38318076 PMCID: PMC10838739 DOI: 10.1016/j.heliyon.2024.e24777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Background Lactylation is implicated in various aspects of tumor biology, but its relation to breast cancer remains poorly understood. This study aimed to explore the roles of the lactylation-related genes in breast cancer and its association with the tumor microenvironment. Methods The expression and mutation patterns of lactylation-related genes were analyzed using the breast cancer data from The Cancer Genome Atlas (TCGA) database and GSE20685 datasets. Unsupervised clustering was used to identify two lactylation clusters. A lactylation-related gene signature was developed and validated using the training and validation cohorts. Immune cell infiltration and drug response were assessed. Results We analyzed the mRNA expression, copy number variations, somatic mutations, and correlation networks of 22 lactylation-related genes in breast cancer tissues. We identified two distinct lactylation clusters with different survival outcomes and immune microenvironments. We further classified the patients into two gene subtypes based on lactylation clusters and identified a 7-gene signature for breast cancer survival prognosis. The prognostic score based on this signature demonstrated prognostic value and predicted the therapeutic response. Conclusion Lactylation-related genes play a critical role in breast cancer by influencing tumor growth, immune microenvironment, and drug response. This lactylation-related gene signature may serve as a prognostic marker and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yangchi Jiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Fuqing Ji
- Department of Thyroid Breast Surgery, Xi'an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Lan Hou
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yonggang Lv
- Department of Thyroid Breast Surgery, Xi'an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Juliang Zhang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|