1
|
Czeleń P, Skotnicka A, Szefler B, Kabatc-Borcz J, Sutkowy P. Design and Synthesis of New 5-Methylisatin Derivatives as Potential CDK2 Inhibitors. Int J Mol Sci 2025; 26:2144. [PMID: 40076766 PMCID: PMC11900410 DOI: 10.3390/ijms26052144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains one of the leading causes of death globally, driving the need for effective therapies. Targeting cyclin-dependent kinase 2 (CDK2), a critical cell cycle regulator, is a promising approach for cancer treatment. This study developed a new group of 5-methylisatin derivatives with strong binding potential to CDK2. By combining the isatin core with various benzoylhydrazide substituents, the design process was guided by molecular docking, dynamic simulations, and ADMET analysis. Thirty-one derivatives were modelled, and a subset was synthesised and characterised for their physicochemical and spectroscopic properties. The analysis suggested that substitutions at R2 and R3 positions improved binding affinity, while modifications at R4 were less favourable. Hydrogen bonds with GLU81 and LEU83, along with hydrophobic interactions, were key to stabilising the complexes. A comparison with a reference molecule (RM) 3-((2,6-Dichlorobenzylidene)hydrazono)indolin-2-one, showing inhibitory activity similar to doxorubicin, revealed several advantages for the new derivatives. The multidimensional comparative analysis highlighted significant improvements in active site affinity, conformational stability, and fit. ADMET analysis confirmed comparable performance in most areas, with superior bioavailability observed in derivatives 1, 2a, 2b, 3h, 3b, and 3e. These results suggest that 5-methylisatin derivatives could be promising CDK2 inhibitors.
Collapse
Affiliation(s)
- Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland;
| | - Agnieszka Skotnicka
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland; (A.S.); (J.K.-B.)
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland;
| | - Janina Kabatc-Borcz
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland; (A.S.); (J.K.-B.)
| | - Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Ghannay S, Aldhafeeri BS, Ahmad I, E.A.E. Albadri A, Patel H, Kadri A, Aouadi K. Identification of dual-target isoxazolidine-isatin hybrids with antidiabetic potential: Design, synthesis, in vitro and multiscale molecular modeling approaches. Heliyon 2024; 10:e25911. [PMID: 38380049 PMCID: PMC10877290 DOI: 10.1016/j.heliyon.2024.e25911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
In the development of novel antidiabetic agents, a novel series of isoxazolidine-isatin hybrids were designed, synthesized, and evaluated as dual α-amylase and α-glucosidase inhibitors. The precise structures of the synthesized scaffolds were characterized using different spectroscopic techniques and elemental analysis. The obtained results were compared to those of the reference drug, acarbose (IC50 = 296.6 ± 0.825 μM for α-amylase & IC50 = 780.4 ± 0.346 μM for α-glucosidase). Among the title compounds, 5d exhibited impressive α-amylase and α-glucosidase inhibitory activity with IC50 values of 30.39 ± 1.52 μM and 65.1 ± 3.11 μM, respectively, followed by 5h (IC50 = 46.65 ± 2.3 μM; IC50 = 85.16 ± 4.25 μM) and 5f (IC50 = 55.71 ± 2.78 μM; IC50 = 106.77 ± 5.31 μM). Mechanistic studies revealed that the most potent derivative 5d bearing the chloro substituent attached to the oxoindolin-3-ylidene core, and acarbose, are a competitive inhibitors of α-amylase and α-glucosidase, respectively. Structure activity relationship (SAR) was examined to guide further structural optimization of the most appropriate substituent(s). Moreover, drug-likeness qualities and ADMET prediction of the most active analogue, 5d was also performed. Subsequently, 5d was subjected to molecular docking and dynamic simulation during the progression of 120 ns analysis to check the essential ligand-receptor patterns, and to estimate its stability. In silico studies were found in good agreement with the in vitro enzymatic inhibitions results. In conclusion, we demonstrated that most potent compound 5d could be exploited as dual potential inhibitor of α-amylase and α-glucosidase for possible management of diabetes.
Collapse
Affiliation(s)
- Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Budur Saleh Aldhafeeri
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Abuzar E.A.E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Al-Baha University, P.O. Box (1988), Al-Baha, 65527, Saudi Arabia
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir, 5019, Tunisia
| |
Collapse
|