1
|
Lai Y, Zhu Y, Zhang X, Ding S, Wang F, Hao J, Wang Z, Shi C, Xu Y, Zheng L, Huang W. Gut microbiota-derived metabolites: Potential targets for cardiorenal syndrome. Pharmacol Res 2025; 214:107672. [PMID: 40010448 DOI: 10.1016/j.phrs.2025.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
The characteristic of cardiorenal syndrome (CRS) is simultaneous damage to both the heart and kidneys. CRS has caused a heavy burden of mortality and incidence rates worldwide. The regulation of host microbiota metabolism that triggers heart and kidney damage is an emerging research field that promotes a new perspective on cardiovascular risk. We summarize current studies from bench to bedside of gut microbiota-derived metabolites to better understand CRS in the context of gut microbiota-derived metabolites. We focused on the involvement of gut microbiota-derived metabolites in the pathophysiology of CRS, including lipid and cholesterol metabolism disorders, coagulation abnormalities and platelet aggregation, oxidative stress, endothelial dysfunction, inflammation, mitochondrial damage and energy metabolism disorders, vascular calcification and renal fibrosis, as well as emerging therapeutic approaches targeting CRS metabolism in gut microbiota-derived metabolites which provides an innovative treatment approach for CRS to improve patient prognosis and overall quality of life.
Collapse
Affiliation(s)
- Yuchen Lai
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Xihui Zhang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Shifang Ding
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China
| | - Fang Wang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Jincen Hao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zhaomeng Wang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Congqi Shi
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yongjin Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| | - Wei Huang
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Pezzuoli C, Biagini G, Magistroni R. Ketogenic Interventions in Autosomal Dominant Polycystic Kidney Disease: A Comprehensive Review of Current Evidence. Nutrients 2024; 16:2676. [PMID: 39203812 PMCID: PMC11356904 DOI: 10.3390/nu16162676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder characterized by the development and enlargement of multiple kidney cysts, leading to progressive kidney function decline. To date, Tolvaptan, the only approved treatment for this condition, is able to slow down the loss of annual kidney function without stopping the progression of the disease. Furthermore, this therapy is approved only for patients with rapid disease progression and its compliance is problematic because of the drug's impact on quality of life. The recent literature suggests that cystic cells are subject to several metabolic dysregulations, particularly in the glucose pathway, and mitochondrial abnormalities, leading to decreased oxidative phosphorylation and impaired fatty acid oxidation. This finding paved the way for new lines of research targeting potential therapeutic interventions for ADPKD. In particular, this review highlights the latest studies on the use of ketosis, through ketogenic dietary interventions (daily calorie restriction, intermittent fasting, time-restricted feeding, ketogenic diets, and exogenous ketosis), as a potential strategy for patients with ADPKD, and the possible involvement of microbiota in the ketogenic interventions' effect.
Collapse
Affiliation(s)
- Carla Pezzuoli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Division of Nephrology, Dialysis and Renal Transplantation, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41125 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Magistroni
- Division of Nephrology, Dialysis and Renal Transplantation, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41125 Modena, Italy
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
3
|
Franza L, Caldarelli M, Villani ER, Cianci R. Sex Differences in Cardiovascular Diseases: Exploring the Role of Microbiota and Immunity. Biomedicines 2024; 12:1645. [PMID: 39200110 PMCID: PMC11352091 DOI: 10.3390/biomedicines12081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of mortality and morbidity in Western countries, thus representing a global health concern. CVDs show different patterns in terms of the prevalence and presentation in men and women. The role of sex hormones has been extensively implicated in these sex-specific differences, due to the presence of the menstrual cycle and menopause in women. Moreover, the gut microbiota (GM) has been implicated in cardiovascular health, considering the growing evidence that it is involved in determining the development of specific diseases. In particular, gut-derived metabolites have been linked to CVDs and kidney disorders, which can in turn promote the progression of CVDs. Considering the differences in the composition of GM between men and women, it is possible that gut microbiota act as a mediator in regard to the sex disparities in CVDs. This narrative review aims to comprehensively review the interplay between sex, GM, and CVDs, discussing potential mechanisms and therapeutic options.
Collapse
Affiliation(s)
- Laura Franza
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS of Rome, 00168 Rome, Italy;
- Emergency Department, Azienda Ospedaliero-Universitaria di Modena, Largo del Pozzo, 71, 41125 Modena, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Emanuele Rocco Villani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- UOC Geriatra-Disturbi Cognitivi e Demenze, Dipartimento di Cure Primarie, AUSL Modena, 41012 Modena, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
4
|
Koufou EE, Assimakopoulos SF, Bosgana P, de Lastic AL, Grypari IM, Georgopoulou GA, Antonopoulou S, Mouzaki A, Kourea HP, Thomopoulos K, Davlouros P. Altered Expression of Intestinal Tight Junction Proteins in Heart Failure Patients with Reduced or Preserved Ejection Fraction: A Pathogenetic Mechanism of Intestinal Hyperpermeability. Biomedicines 2024; 12:160. [PMID: 38255265 PMCID: PMC10813326 DOI: 10.3390/biomedicines12010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Although intestinal microbiota alterations (dysbiosis) have been described in heart failure (HF) patients, the possible mechanisms of intestinal barrier dysfunction leading to endotoxemia and systemic inflammation are not fully understood. In this study, we investigated the expression of the intestinal tight junction (TJ) proteins occludin and claudin-1 in patients with HF with reduced (HFrEF) or preserved ejection fraction (HFpEF) and their possible association with systemic endotoxemia and inflammation. Ten healthy controls and twenty-eight patients with HF (HFrEF (n = 14), HFpEF (n = 14)) underwent duodenal biopsy. Histological parameters were recorded, intraepithelial CD3+ T-cells and the expression of occludin and claudin-1 in enterocytes were examined using immunohistochemistry, circulating endotoxin concentrations were determined using ELISA, and concentrations of cytokines were determined using flow cytometry. Patients with HFrEF or HFpEF had significantly higher serum endotoxin concentrations (p < 0.001), a significantly decreased intestinal occludin and claudin-1 expression (in HfrEF p < 0.01 for occludin, p < 0.05 for claudin-1, in HfpEF p < 0.01 occludin and claudin-1), and significantly increased serum concentrations of IL-6, IL-8, and IL-10 (for IL-6 and IL-10, p < 0.05 for HFrEF and p < 0.001 for HFpEF; and for IL-8, p < 0.05 for both groups) compared to controls. Occludin and claudin-1 expression inversely correlated with systemic endotoxemia (p < 0.05 and p < 0.01, respectively). Heart failure, regardless of the type of ejection fraction, results in a significant decrease in enterocytic occludin and claudin-1 expression, which may represent an important cellular mechanism for the intestinal barrier dysfunction causing systemic endotoxemia and inflammatory response.
Collapse
Affiliation(s)
| | - Stelios F. Assimakopoulos
- Department of Internal Medicine and Division of Infectious Diseases, University of Patras Medical School, 26504 Patras, Greece;
| | - Pinelopi Bosgana
- Department of Pathology, Medical School of Patras, 26504 Patras, Greece; (P.B.); (H.P.K.)
| | - Anne-Lise de Lastic
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (A.-L.d.L.); (A.M.)
| | - Ioanna-Maria Grypari
- Cytology Department, Aretaieion University Hospital, National Kapodistrian University of Athens, 11528 Athens, Greece;
| | | | | | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece; (A.-L.d.L.); (A.M.)
| | - Helen P. Kourea
- Department of Pathology, Medical School of Patras, 26504 Patras, Greece; (P.B.); (H.P.K.)
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, 26504 Patras, Greece;
| | - Periklis Davlouros
- Department of Cardiology, Patras University Hospital, 26504 Patras, Greece;
| |
Collapse
|
5
|
Candelli M, Franza L, Cianci R, Pignataro G, Merra G, Piccioni A, Ojetti V, Gasbarrini A, Franceschi F. The Interplay between Helicobacter pylori and Gut Microbiota in Non-Gastrointestinal Disorders: A Special Focus on Atherosclerosis. Int J Mol Sci 2023; 24:17520. [PMID: 38139349 PMCID: PMC10744166 DOI: 10.3390/ijms242417520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The discovery of Helicobacter pylori (H. pylori) in the early 1980s by Nobel Prize winners in medicine Robin Warren and Barry Marshall led to a revolution in physiopathology and consequently in the treatment of peptic ulcer disease. Subsequently, H. pylori has also been linked to non-gastrointestinal diseases, such as autoimmune thrombocytopenia, acne rosacea, and Raynaud's syndrome. In addition, several studies have shown an association with cardiovascular disease and atherosclerosis. Our narrative review aims to investigate the connection between H. pylori infection, gut microbiota, and extra-gastric diseases, with a particular emphasis on atherosclerosis. We conducted an extensive search on PubMed, Google Scholar, and Scopus, using the keywords "H. pylori", "dysbiosis", "microbiota", "atherosclerosis", "cardiovascular disease" in the last ten years. Atherosclerosis is a complex condition in which the arteries thicken or harden due to plaque deposits in the inner lining of an artery and is associated with several cardiovascular diseases. Recent research has highlighted the role of the microbiota in the pathogenesis of this group of diseases. H. pylori is able to both directly influence the onset of atherosclerosis and negatively modulate the microbiota. H. pylori is an important factor in promoting atherosclerosis. Progress is being made in understanding the underlying mechanisms, which could open the way to interesting new therapeutic perspectives.
Collapse
Affiliation(s)
- Marcello Candelli
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Laura Franza
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| | - Giulia Pignataro
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Giuseppe Merra
- Biomedicine and Prevention Department, Section of Clinical Nutrition and Nutrigenomics, Facoltà di Medicina e Chirurgia, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy;
| | - Andrea Piccioni
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Antonio Gasbarrini
- Medical, Abdominal Surgery and Endocrine-Metabolic Science Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy;
| | - Francesco Franceschi
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| |
Collapse
|