1
|
Maparu K, Chatterjee D, Kaur R, Kalia N, Kuwar OK, Attri M, Singh S. Molecular crosstalk between GPCR and receptor tyrosine-protein kinase in neuroblastoma: molecular mechanism and therapeutic implications. Med Oncol 2025; 42:131. [PMID: 40121614 DOI: 10.1007/s12032-025-02685-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Neuroblastoma is an aggressive pediatric tumor condition derived from neural crest cells that typically affect infants and children under the age of five. It can often originate in the adrenal glands but can also develop in the sympathetic nervous system. G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases have been shown in recent research to have a vital role in the progression of neuroblastoma. GPCR-RTK crosstalk stimulates signaling pathways such as MAP kinase, and the activation of the GPCR-AKT signaling pathway plays a critical role in neuroblastoma progression by promoting cell growth, survival, and resistance to apoptosis through complex interactions with insulin signaling pathways. ALK (Anaplastic lymphoma kinase), a member of the RTK family, and any mutations can lead to oncogenic signaling and resistance to targeted therapy in neuroblastoma. By interfering with cellular signaling via novel therapeutic strategies by selective RET inhibitors, ALK inhibitors, and Trk-specific inhibitors may be able to reduce the prevalence of neuroblastoma. Understanding the complicated signaling relationships between GPCRs, RTKs, and the insulin pathway is critical when developing new cancer treatments. The integration of these signaling networks offers promising avenues for enhancing the effectiveness of existing treatments and improving patient outcomes in neuroblastoma.
Collapse
Affiliation(s)
- Kousik Maparu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Dhrita Chatterjee
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Romanpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Nileshwar Kalia
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Omkar Kumar Kuwar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Mayank Attri
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Yang Q, Guo Y, Guo W, Liu D, Wang H, Cai X. Combined utility of genomic breakpoints and frame is a reliable predictor of ALK transcript function. Sci Rep 2025; 15:8437. [PMID: 40069549 PMCID: PMC11897202 DOI: 10.1038/s41598-025-92590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Lung cancer is a major cause of cancer-related deaths globally. Targeted therapies, specifically attacking cancer cells based on genetic mutations, offer promising alternatives. ALK (anaplastic lymphoma kinase) fusions result in aberrant proteins that drive cancer growth. Drugs like crizotinib and ceritinib have shown efficacy in treating ALK-positive NSCLC. Accurate detection of ALK fusions is crucial for guiding these therapies. We conducted a retrospective analysis of a Chinese cohort of 131 ALK rearrangement-positive patients detected by DNA NGS between January 2017 and December 2021. Among those 131 ALK fusions, RNA-NGS confirmed positive transcripts in 88% of canonical ALK fusions and 75% of ALK fusions with rare partners in samples sequenced by both DNA NGS and RNA NGS. The secondary classification approach increased transcript prediction accuracy to 95.4% when combining common breakpoints and inframe fusion analysis in canonical ALK fusions. Combining rare breakpoints and inframe fusion could increase transcript prediction accuracy to 100%. For ALK fusions with rare partners, combining common breakpoints and frameshift improved transcript prediction accuracy to 100%. Additionally, combining rare breakpoints with inframe or frameshift could enhance the prediction accuracy to 100%. Combining DNA NGS and RNA NGS with a secondary classification approach significantly enhances the transcript prediction accuracy at the RNA level. This method optimizes clinical diagnostic and therapeutic strategies for ALK-positive NSCLC, highlighting the importance of advanced sequencing techniques in precision oncology.
Collapse
Affiliation(s)
- Qiong Yang
- General Surgery, Cancer Center, Department of Lymphatic surgery and reconstructive microsurgery, Zhejiang Provincial People's Hospital Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yumin Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weihui Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongdong Liu
- Cancer Center, Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haitao Wang
- Cancer Center, Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Xufan Cai
- Cancer Center, Department of Thoracic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Huo Y, Ma M, Tian W, Wang F, Liao X. Hepatic adverse events associated with anaplastic lymphoma kinase tyrosine kinase inhibitors: a disproportionality analysis based on FAERS database and analysis of drug-gene interaction network. Expert Opin Drug Saf 2025:1-11. [PMID: 39949054 DOI: 10.1080/14740338.2025.2467830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/19/2025]
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) are vital for treating ALK-positive cancers but have been associated with liver injury, necessitating further safety investigation. This study examines hepatic adverse event (AE) signals related to ALK TKIs using the U.S. FDA Adverse Event Reporting System (FAERS) and explores potential mechanisms of liver injury. RESEARCH DESIGN AND METHODS AE reports from FAERS (Q3 2011 to Q1 2024) related to liver injury were analyzed using the reporting odds ratio (ROR) and multi-item gamma Poisson shrinker (MGPS) methods. Pathway enrichment and drug-gene network analyses were performed to investigate underlying mechanisms. RESULTS This study identified 2,132 AE reports from the FAERS database linking hepatic AEs to ALK TKIs therapy. Significant signals were detected by ROR and MGPS methods, with common AEs including aminotransferase abnormalities, hyperbilirubinemia, and increased blood alkaline phosphatase, mainly occurring within the first 30 days of treatment. Gene analysis revealed key nodes in the protein-protein interaction (PPI) network, such as PIK3CA, SRC, and PTK2. Enriched KEGG pathways included the MAPK, PI3K-Akt, and Ras signaling. CONCLUSION This pharmacovigilance study identifies significant AE signals linking ALK TKIs to liver injury, highlighting potential mechanisms and providing insights for clinical management and patient outcomes.
Collapse
Affiliation(s)
- Yan Huo
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Minghua Ma
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weiwei Tian
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Wang
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolan Liao
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Lim ZF, Wu X, Zhu L, Albandar H, Hafez M, Zhao C, Almubarak M, Smolkin M, Zheng H, Wen S, Ma PC. Quantitative peripheral live single T-cell dynamic polyfunctionality profiling predicts lung cancer checkpoint immunotherapy treatment response and clinical outcomes. Transl Lung Cancer Res 2024; 13:3323-3343. [PMID: 39830778 PMCID: PMC11736609 DOI: 10.21037/tlcr-24-260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 01/22/2025]
Abstract
Background Predictive biomarkers for immune checkpoint inhibitors (ICIs), e.g., programmed death ligand-1 (PD-L1) tumor proportional score (TPS), remain limited in clinical applications. Predictive biomarkers that require invasive tumor biopsy procedures are practically challenging especially when longitudinal follow-up is required. Clinical utility of tissue-based PD-L1 TPS also becomes diluted when ICI is combined with chemotherapies. Peripheral single T-cell dynamic polyfunctionality profiling offers the opportunity to reveal rare T-cell subpopulations that are polyfunctional and responsible for the underlying ICI treatment molecular response that bulk biological assays cannot achieve. Here, we evaluated a novel live single-cell functional liquid biopsy cytokine profiling platform, IsoLight, as a potential predictive biomarker to track ICI treatment response and clinical outcomes in non-small cell lung cancer (NSCLC). Methods Peripheral blood mononuclear cell samples of 10 healthy donors and 10 NSCLC patients undergoing ICI-based therapies were collected longitudinally pre-/post-ICI treatment after ≥2 cycles under institutional review board (IRB)-approved protocols. Cancer blood samples were collected from unresectable advanced stage (III-IV) NSCLC patients. Clinical course and treatment response and survival outcomes were extracted from electronic health records, with treatment response assessed by treating oncologists based on RECIST. CD4+ and CD8+ T-cells were enriched magnetically and analyzed on the IsoLight platform. Single T-cells were captured in microchambers on IsoCode chips for proteomic immune cytokines profiling. Functional polyfunctionality data from 55,775 single cells were analyzed with IsoSpeak software, 2D- and 3D-t-distributed stochastic neighbor embedding (t-SNE) analysis, kappa coefficient, and Kaplan-Meier survival plots. P values ≤0.05 is considered statistically significant. Results Pre-treatment baseline polyfunctionality profiles could not differentiate NSCLC patients from healthy subjects, and could not differentiate ICI responders from non-responders. We found a statistically significant difference between responders and non-responders in CD8+ T-cells' changes in overall polyfunctionality (ΔPolyFx) (P=0.01) and polyfunctional strength index (ΔPSI) (P=0.006) in our dynamic pre-/post-treatment single cell measurements, both performing better than PD-L1 TPS alone (P=0.08). In the 3D-t-SNE analysis, subpopulations of post-treatment CD8+ T-cells in ICI responders displayed distinct immune cytokine profiles from those in pre-treatment cells. CD8+ T-cells ΔPolyFx and ΔPSI scores performed better than PD-L1 TPS in ICI response correlation. Moreover, combined PD-L1 strong TPS and ΔPSI >15 scores strongly correlated with early ICI response with a robust kappa coefficient of 1.0 (P=0.003), which was previously statistically established to indicate a perfect agreement between the prediction and actual response status. Interestingly, high CD4+ T-cells ΔPSI >5 was found to correlate with a strong trend of improved progression-free survival (3.9-fold) (10.8 vs. 2.8 months; P=0.07) and overall survival (3-fold) (34.5 vs. 11.5 months; P=0.09) in ICI-treated patients. Conclusions Our study nominates single peripheral T-cell polyfunctionality dynamics analysis to be a promising liquid biopsy platform to determine potential ICI predictive biomarker in NSCLC. It warrants further studies in larger prospective cohorts to validate the clinical utilities and to further optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Zuan-Fu Lim
- Cancer Cell Biology Program, West Virginia University School of Medicine, West Virginia University, Morgantown, WV, USA
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| | - Xiaoliang Wu
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| | - Lin Zhu
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| | - Heidar Albandar
- WVU Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Maria Hafez
- WVU Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Chenchen Zhao
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| | - Mohammed Almubarak
- WVU Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV, USA
- Division of Hematology & Oncology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, USA
| | - Matthew Smolkin
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Hong Zheng
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| | - Sijin Wen
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Patrick C. Ma
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
5
|
WEI A, JIANG B, HUANG Y, LIU M, YAN J, ZHAO Y, HE W. [Research Progress of ALK Activation Pattern Changes and Targeted Therapy
in Advanced Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:940-946. [PMID: 39962849 PMCID: PMC11839494 DOI: 10.3779/j.issn.1009-3419.2024.102.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Indexed: 02/23/2025]
Abstract
Lung cancer is the most common cancer in China and even in the world, and it is also the main cause of cancer death. Patients with anaplastic lymphoma kinase (ALK) gene alterations have the opportunity to receive molecularly targeted therapies. The inhibitors of anaplastic lymphoma kinase, such as ALK-tyrosine kinase inhibitors (ALK-TKIs) significantly prolong the survival of patients. ALK gene variant types include point mutation, amplification, fusion/rearrangement, and ALK fusion is more common than other types. However, the effect of different types of gene changes in molecular targeted therapy is different. Therefore, this paper introduced the relevant contents of different variants of ALK gene, focused on the research progress of targeted therapy, and proposed the future development direction.
.
Collapse
|
6
|
Liu M, Li Q, Meng X, Cui Y, Sun W, Wang H, Gao Q. Identification of gene signatures relevant to the efficacy of immune checkpoint inhibitors in non-small cell lung cancer. Medicine (Baltimore) 2024; 103:e40569. [PMID: 39654181 PMCID: PMC11630944 DOI: 10.1097/md.0000000000040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) through immunotherapy, many patients still exhibit resistance to this approach. This study aims to identify the characteristics of individuals who can benefit from immunotherapy, especially immune checkpoint inhibitors (ICIs), and to investigate optimal strategies for patients who experience resistance to it. Data on gene expression patterns and clinical information from NSCLC patients who underwent immunotherapy were obtained from the Gene Expression Omnibus databases. A predictive signature for immunotherapy prognosis was developed using a training dataset and validated with validation datasets. Immune landscape and immunotherapy responsiveness analyses were conducted to assess the risk signature. Additionally, data from a study on immunotherapy were used to evaluate the correlation between MNX1 mutation and the effectiveness of ICIs, including clinical data and whole exome sequencing data. We identified 7 genes in NSCLC using RNA-seq data that were significantly associated with the efficacy of immunotherapy. Based on these genes, a risk signature was created to predict the efficacy of ICIs. Patients in the low-risk group had better outcomes compared to those in the high-risk group after receiving ICIs. Additionally, our analysis of the immune landscape revealed a significant association between the high-risk signature and an immunosuppressive state. We also discovered an unexpected role of tumor-specific MNX1 and HOXD1 in suppressing the immune response against cancer. Notably, NSCLC patients with MNX1 mutations experienced prolonged progression-free survival. Furthermore, we identified several medications that exhibited increased sensitivity in patients with high MNX1 expression, with topoisomerase inhibitors showing the highest level of sensitivity. This could be a potential strategy to improve the efficacy of ICIs. The risk signature has demonstrated its effectiveness in forecasting the prognosis of NSCLC treated with ICIs, enabling better patient stratification and more accurate prediction of immunotherapy response. Moreover, MNX1 and HOXD1 have been identified as key molecules related to immunotherapy resistance. Inhibition of these molecules, combined with current ICIs, offers novel strategies for the management of NSCLC patients.
Collapse
Affiliation(s)
- Min Liu
- Department of General Medicine, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Qiao Li
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaohong Meng
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanan Cui
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Weirong Sun
- Radiological Department, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongmei Wang
- Department of General Medicine, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Qingjun Gao
- Department of Thoracic Surgery, The People’s Hospital of Rushan City, Weihai, PR China
| |
Collapse
|
7
|
Sun Y, Ma L, Zhang X, Wang Z. Advances in the Treatment of Rare Mutations in Non-Small Cell Lung Cancer. Onco Targets Ther 2024; 17:1095-1115. [PMID: 39583247 PMCID: PMC11585992 DOI: 10.2147/ott.s487870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer is a malignant tumor with the highest morbidity and mortality rate worldwide, with nearly 2.5 million new cases and more than 1.8 million deaths reported globally in 2022. Lung cancer is broadly categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), with NSCLC accounting for about 85% of all cases. Early-stage lung cancers often present without obvious symptoms, resulting in most patients being diagnosed at an advanced stage where traditional chemotherapy has limited efficacy. Recent advances in molecular biology have elucidated the pivotal role of gene mutations in tumor development, paving the way for targeted therapies that have markedly benefited patients. Beyond the well-known epidermal growth factor receptor (EGFR) mutation, an increasing number of new molecular targets have been identified, including ROS1 rearrangement, BRAF mutation, NTRK fusion, RET fusion, MET mutation, KRAS G12C mutation, HER2 mutation, ALK rearrangement, and NRG1 fusion. Some of these targeted therapies have already been approved by the Food and Drug Administration (FDA), and many others are currently undergoing clinical trials. This review summarizes recent advances in NSCLC treatment with molecular targets, highlighting progress, challenges, and their impact on patient prognosis.
Collapse
Affiliation(s)
- Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
8
|
AlDoughaim M, AlSuhebany N, AlZahrani M, AlQahtani T, AlGhamdi S, Badreldin H, Al Alshaykh H. Cancer Biomarkers and Precision Oncology: A Review of Recent Trends and Innovations. Clin Med Insights Oncol 2024; 18:11795549241298541. [PMID: 39559827 PMCID: PMC11571259 DOI: 10.1177/11795549241298541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
The discovery of cancer-specific biomarkers has resulted in major advancements in the field of cancer diagnostics and therapeutics, therefore significantly lowering cancer-related morbidity and mortality. Cancer biomarkers can be generally classified as prognostic biomarkers that predict specific disease outcomes and predictive biomarkers that predict disease response to targeted therapeutic interventions. As research in the area of predictive biomarkers continues to grow, precision medicine becomes far more integrated in cancer treatment. This article presents a general overview on the most recent advancements in the area of cancer biomarkers, immunotherapy, artificial intelligence, and pharmacogenomics of the Middle East.
Collapse
Affiliation(s)
- Maha AlDoughaim
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Nada AlSuhebany
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohammed AlZahrani
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Tariq AlQahtani
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Sahar AlGhamdi
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Hisham Badreldin
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Hana Al Alshaykh
- Pharmaceutical Care Devision, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Venkatesan J, Murugan D, Lakshminarayanan K, Smith AR, Vasanthakumari Thirumalaiswamy H, Kandhasamy H, Zender B, Zheng G, Rangasamy L. Powering up targeted protein degradation through active and passive tumour-targeting strategies: Current and future scopes. Pharmacol Ther 2024; 263:108725. [PMID: 39322067 DOI: 10.1016/j.pharmthera.2024.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a prominent and vital strategy for therapeutic intervention of cancers and other diseases. One such approach involves the exploration of proteolysis targeting chimeras (PROTACs) for the selective elimination of disease-causing proteins through the innate ubiquitin-proteasome pathway. Due to the unprecedented achievements of various PROTAC molecules in clinical trials, researchers have moved towards other physiological protein degradation approaches for the targeted degradation of abnormal proteins, including lysosome-targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagosome-tethering compounds (ATTECs), molecular glue degraders, and other derivatives for their precise mode of action. Despite numerous advantages, these molecules face challenges in solubility, permeability, bioavailability, and potential off-target or on-target off-tissue effects. Thus, an urgent need arises to direct the action of these degrader molecules specifically against cancer cells, leaving the proteins of non-cancerous cells intact. Recent advancements in TPD have led to innovative delivery methods that ensure the degraders are delivered in a cell- or tissue-specific manner to achieve cell/tissue-selective degradation of target proteins. Such receptor-specific active delivery or nano-based passive delivery of the PROTACs could be achieved by conjugating them with targeting ligands (antibodies, aptamers, peptides, or small molecule ligands) or nano-based carriers. These techniques help to achieve precise delivery of PROTAC payloads to the target sites. Notably, the successful entry of a Degrader Antibody Conjugate (DAC), ORM-5029, into a phase 1 clinical trial underscores the therapeutic potential of these conjugates, including LYTAC-antibody conjugates (LACs) and aptamer-based targeted protein degraders. Further, using bispecific antibody-based degraders (AbTACs) and delivering the PROTAC pre-fused with E3 ligases provides a solution for cell type-specific protein degradation. Here, we highlighted the current advancements and challenges associated with developing new tumour-specific protein degrader approaches and summarized their potential as single agents or combination therapeutics for cancer.
Collapse
Affiliation(s)
- Janarthanan Venkatesan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India; School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kalaiarasu Lakshminarayanan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Alexis R Smith
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Harashkumar Vasanthakumari Thirumalaiswamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hariprasath Kandhasamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Boutheina Zender
- Department of Biomedical Engineering, Bahçeşehir University, Istanbul 34353, Turkey
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
10
|
Ji Y, Wang Y, Zhang N, Yang J, Li J, Zheng H, Wang L, Wang W, Li J. Mechanism of LMNB1 activating GPR84 through JAK-STAT pathway to mediate M2 macrophage polarization in lung cancer. Hum Immunol 2024; 85:111150. [PMID: 39357468 DOI: 10.1016/j.humimm.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND It is reported that G protein-coupled receptor 84 (GPR84) can participate in inflammation and immune regulation to repress anti-tumor responses. However, the function of GPR84 in lung cancer (LC) and its potential molecular mechanisms are still largely unknown. METHODS Bioinformatics and molecular experiments were employed to assess the expression of GPR84 in LC. The pathways enriched by GPR84 were analyzed by the Kyoto Encyclopedia of Genes and Genomes. Bioinformatics prediction identified the potential upstream regulatory factors of GPR84, which were verified through dual luciferase and chromatin immunoprecipitation experiments. Cell viability was measured by methyl thiazolyl tetrazolium assay. The expression levels of key proteins related to the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway such as JAK2, p-JAK2, p-STAT3, and STAT3 were detected by western blot. Macrophages were co-cultured with LC cells. Flow cytometry was employed to examine the proportion of mannose receptor-positive cells. The expression levels of M2 polarization marker genes chitinase-like protein 3, arginase-1, and found in inflammatory zone 1 were measured by quantitative reverse transcription polymerase chain reaction. We applied an enzyme-linked immunosorbent assay to determine levels of cytokines (interleukin-10 and transforming growth factor beta) to evaluate the M2 macrophage polarization. RESULTS GPR84 was highly expressed in LC and substantially enriched in the JAK-STAT pathway. GPR84 facilitated the M2 polarization of macrophages in LC. Adding the JAK-STAT pathway inhibitor weakened the promoting effect of GPR84 overexpression on M2 macrophage polarization. Furthermore, GPR84 also had an upstream regulatory factor lamin B1 (LMNB1). Knocking down LMNB1 blocked the JAK-STAT signaling pathway to repress M2 macrophage polarization in LC, while overexpression of GPR84 reversed the impact of LMNB1 knockdown on macrophage polarization. CONCLUSION The project suggested that the LMNB1/GPR84 axis can facilitate M2 polarization of macrophages in LC by triggering the JAK-STAT pathway. Targeting LMNB1/GPR84 or blocking the JAK-STAT pathway may be a novel approach for LC diagnosis and treatment.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Yuekun Wang
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Ning Zhang
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Junhong Yang
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Jing Li
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Hui Zheng
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Lihua Wang
- Department of Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Weijie Wang
- Department of Surgical Oncology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China.
| | - Junkuo Li
- Department of Pathology, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China.
| |
Collapse
|
11
|
Song T, Yang Y, Wang Y, Ni Y, Yang Y, Zhang L. Bulk and single-cell RNA sequencing reveal the contribution of laminin γ2 -CD44 to the immune resistance in lymphocyte-infiltrated squamous lung cancer subtype. Heliyon 2024; 10:e31299. [PMID: 38803944 PMCID: PMC11129014 DOI: 10.1016/j.heliyon.2024.e31299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The high heterogeneity of lung squamous cell carcinomas (LUSC) and the complex tumor microenvironment lead to non-response to immunotherapy in many patients. Therefore, characterizing the heterogeneity of the tumor microenvironment in patients with LUSC and further exploring the immune features and molecular mechanisms that lead to immune resistance will help improve the efficacy of immunotherapy in such patients. Herein, we retrospectively analyzed the RNA sequencing (RNA-seq) data of 513 LUSC samples with other multiomics and single-cell RNA-seq data and validated key features using multiplex immunohistochemistry. We divided these samples into six subtypes (CS1-CS6) based on the RNA-seq data and found that CS3 activates the immune response with a high level of lymphocyte infiltration and gathers a large number of patients with advanced-stage disease but increases the expression of exhausted markers cytotoxic T-lymphocyte associated protein 4, lymphocyte-activation gene 3, and programmed death-1. The prediction of the response to immunotherapy showed that CS3 is potentially resistant to immune checkpoint blockade therapy, and multi-omic data analysis revealed that CS3 specifically expresses immunosuppression-related proteins B cell lymphoma 2, GRB2-associated binding protein, and dual-specificity phosphatase 4 and has a high mutation ratio of the driver gene ATP binding cassette subfamily A member 13. Furthermore, single-cell RNA-seq verified lymphocyte infiltration in the CS3 subtype and revealed a positive relationship between the expression of LAMC2-CD44 and immune resistance. LAMC2 and CD44 are epithelial-mesenchymal transition-associated genes that modulate tumor proliferation, and multicolor immunofluorescence validated the negative relationship between the expression of LAMC2-CD44 and immune infiltration. Thus, we identified a lymphocyte-infiltrated subtype (CS3) in patients with LUSC that exhibited resistance to immune checkpoint blockade therapy, and the co-hyperexpression of LAMC2-CD44 contributed to immune resistance, which could potentially improve immunological efficacy by targeting this molecule pair in combination with immunotherapy.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yilong Wang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinyun Ni
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongfeng Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
12
|
Jabbarzadeh Kaboli P, Chen HF, Babaeizad A, Roustai Geraylow K, Yamaguchi H, Hung MC. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett 2024; 588:216780. [PMID: 38462033 DOI: 10.1016/j.canlet.2024.216780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
13
|
Li D, Zhu Y, Song J, Yang D, Cui S, Liu X, Wang L, Zhang J, Pan E, Dai Z. Rapid response to fifth-line brigatinib plus entrectinib in an ALK-rearranged lung adenocarcinoma with an acquired ETV6- NTRK3 fusion: a case report. Front Oncol 2024; 14:1339511. [PMID: 38699646 PMCID: PMC11063249 DOI: 10.3389/fonc.2024.1339511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
The management of non-small cell lung cancer (NSCLC), specifically targeting the anaplastic lymphoma kinase (ALK) with tyrosine kinase inhibitors (TKIs), is challenged by the emergence of therapeutic resistance. Resistance mechanisms to ALK TKIs can be broadly classified into ALK-dependent and ALK-independent pathways. Here, we present a case with lung adenocarcinoma (LUAD) harboring an ALK rearrangement. The patient had developed resistance to sequential ALK TKI therapies, with an acquired ETV6-NTRK3 (E4:N14) fusion as a potential mechanism of ALK-independent resistance to lorlatinib. Subsequently, the patient was treated with the combination of brigatinib plus entrectinib and demonstrated a positive response, achieving an 8-month progression-free survival. Our case provides a potential treatment option for LUAD patients with ALK rearrangements and highlights the utility of next-generation sequencing (NGS) in uncovering genetic alterations that can guide the selection of effective treatment strategies.
Collapse
Affiliation(s)
- Dan Li
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yue Zhu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jincheng Song
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dafu Yang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Saiqiong Cui
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Le Wang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jiangyan Zhang
- Department of Medical Services, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Evenki Pan
- Department of Medical Services, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Zhaoxia Dai
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|