1
|
Drenjančević I, Stupin A, Jukić I, Kolobarić N, Šušnjara P, Kozina N, Kovač L, Mihaljević Z. Oral Carnosine Supplementation Preserves Vascular Function of Sprague Dawley Rats on a High-Salt Diet via Restored Antioxidative Defence. Nutrients 2024; 17:36. [PMID: 39796470 PMCID: PMC11722805 DOI: 10.3390/nu17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Backgrounds/Objectives: Following previous findings on high-salt (HS)-intake-related increase of oxidative stress, this study explored whether carnosine (CAR; β-alanyl-L-histidine), a reactive oxygen species (ROS) scavenger, enhanced antioxidative defence and vascular function following HS, potentially via the NRF2 or HIF-1α signalling pathway. Methods: Sprague Dawley rats (64, 8-10 weeks old, both sexes) were divided into four groups (n = 6/group): CTRL (0.4% NaCl), HS (4% NaCl for 7 days), CTRL + CAR (0.4% NaCl and 150 mg/kg/day oral CAR supplementation), and HS + CAR (4% NaCl and CAR). Acetylcholine-induced relaxation (AChIR) and hypoxia-induced relaxation (HIR) were evaluated in norepinephrine-precontracted (NE, 10-7 M) aortic rings. HIR was also tested with NRF2 (ML-385, 5 × 10-6 M) and HIF-1α (LW6, 10-4 M) inhibitors. Gene expression of superoxide dismutases 1, 2, and 3 (SOD1, 2 and 3), glutathione peroxidases (GPx1 and 4), catalase (CAT), NRF2, and NAD(P)H dehydrogenase (quinone 1) (NQO1) in aortic tissue was measured by RT-qPCR. Ferric reducing antioxidant power (FRAP) and advanced oxidation protein products (AOPPs) assays were performed on serum samples. All experimental procedures conformed to the European Guidelines (directive 86/609) and were approved by the local and national Ethical Committees (#2158-61-46-23-36, EP355/2022). Results: HS impaired AChIR and HIR, both preserved by CAR. NRF2 and HIF-1α inhibitors suppressed HIR in the HS and HS + CAR groups. CAR significantly increased SOD1 and 2, NRF2, and NQO1 expression and SOD activity compared to the CTRL and HS groups. GPx1 and GPx4 were upregulated in HS + CAR compared to HS. CAR prevented an increase in AOPPs, which were elevated in HS, while FRAP was highest in HS + CAR. Conclusions: Carnosine enhances antioxidative defence by upregulating antioxidant enzymes and activities and preserves vascular relaxation, likely via NRF2 signalling.
Collapse
Affiliation(s)
- Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (I.D.); (A.S.); (I.J.); (N.K.); (N.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (I.D.); (A.S.); (I.J.); (N.K.); (N.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (I.D.); (A.S.); (I.J.); (N.K.); (N.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (I.D.); (A.S.); (I.J.); (N.K.); (N.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Petar Šušnjara
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
- Faculty of Kinesiology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Nataša Kozina
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (I.D.); (A.S.); (I.J.); (N.K.); (N.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Lora Kovač
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (I.D.); (A.S.); (I.J.); (N.K.); (N.K.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (I.D.); (A.S.); (I.J.); (N.K.); (N.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| |
Collapse
|