1
|
Mestiri S, Sami A, Sah N, El-Ella DMA, Khatoon S, Shafique K, Raza A, Mathkor DM, Haque S. Cellular plasticity and non-small cell lung cancer: role of T and NK cell immune evasion and acquisition of resistance to immunotherapies. Cancer Metastasis Rev 2025; 44:27. [PMID: 39856479 DOI: 10.1007/s10555-025-10244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines. Immunosuppressive cells, including M2 tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, contribute to resistance by suppressing the immune response. This cellular plasticity is influenced when B cells, natural killer cells, and T cells are exhausted or inhibited by components of the tumor microenvironment. Conversely, diverse T cell, NK cell, and B cell subsets hold potential as predictive response markers particularly cytotoxic CD8+ T cells, effector memory T cells, activated T cells, tumor infiltrated NK cells, tertiary lymphoid structures, etc. influence treatment response. Identifying specific gene expressions and immunophenotypes within T cells may offer insights into early clinical responses to immunotherapy. ICI resistance in NSCLC is a multifaceted process shaped by tumor plasticity, the complex tumor microenvironment, and dynamic immune cell changes. Comprehensive analysis of these factors may lead to the identification of novel biomarkers and combination therapies to enhance ICI efficacy in NSCLC treatment.
Collapse
Affiliation(s)
- Sarra Mestiri
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ana Sami
- Queen Mary University of London, London, UK
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sabiha Khatoon
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Khadija Shafique
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, UAE.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
- Universidad Espiritu Santo, Samborondon, Ecuador.
| |
Collapse
|
2
|
Zhai J, Tamegnon A, Jiang M, Pandurengan RK, Parra ER. Immune profiling of mouse lung adenocarcinoma paraffin tissues using multiplex immunofluorescence panel: a pilot study. Lab Anim Res 2024; 40:24. [PMID: 38877529 PMCID: PMC11177412 DOI: 10.1186/s42826-024-00210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Immune profiling has become an important tool for identifying predictive, prognostic and response biomarkers for immune checkpoint inhibitors from tumor microenvironment (TME). We aimed to build a multiplex immunofluorescence (mIF) panel to apply to formalin-fixed and paraffin-embedded tissues in mice tumors and to explore the programmed cell death protein 1/ programmed cell death 1 ligand 1 (PD-1/PD-L1) axis. RESULTS An automated eight-color mIF panel was evaluated to study the TME using seven antibodies, including cytokeratin 19, CD3e, CD8a, CD4, PD-1, PD-L1, F4-80 and DAPI, then was applied in six mice lung adenocarcinoma samples. Cell phenotypes were quantified by software to explore the co-localization and spatial distribution between immune cells within the TME. This mice panel was successfully optimized and applied to a small cohort of mice lung adenocarcinoma cases. Image analysis showed a sparse degree of immune cell expression pattern in this cohort. From the spatial analysis we found that T cells and macrophages expressing PD-L1 were close to the malignant cells and other immune cells. CONCLUSIONS Comprehensive immune profiling using mIF in translational studies improves our ability to correlate the PD-1/PD-L1 axis and spatial distribution of lymphocytes and macrophages in mouse lung cancer cells to provide new cues for immunotherapy, that can be translated to human tumors for cancer intervention.
Collapse
Affiliation(s)
- Jie Zhai
- Department of Translational Molecular Pathology, Unit 951, The University of Texas MD Anderson Cancer Center, 2130 Holcombe Blvd, Houston, 77030, TX, USA
| | - Auriole Tamegnon
- Department of Translational Molecular Pathology, Unit 951, The University of Texas MD Anderson Cancer Center, 2130 Holcombe Blvd, Houston, 77030, TX, USA
| | - Mei Jiang
- Department of Translational Molecular Pathology, Unit 951, The University of Texas MD Anderson Cancer Center, 2130 Holcombe Blvd, Houston, 77030, TX, USA
| | - Renganayaki Krishna Pandurengan
- Department of Translational Molecular Pathology, Unit 951, The University of Texas MD Anderson Cancer Center, 2130 Holcombe Blvd, Houston, 77030, TX, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, Unit 951, The University of Texas MD Anderson Cancer Center, 2130 Holcombe Blvd, Houston, 77030, TX, USA.
| |
Collapse
|
3
|
Seager RJ, Senosain MF, Van Roey E, Gao S, DePietro P, Nesline MK, Dash DP, Zhang S, Ko H, Hastings SB, Strickland KC, Previs RA, Jensen TJ, Eisenberg M, Caveney BJ, Severson EA, Ramkissoon S, Conroy JM, Pabla S. Cancer testis antigen burden (CTAB): a novel biomarker of tumor-associated antigens in lung cancer. J Transl Med 2024; 22:141. [PMID: 38326843 PMCID: PMC10851610 DOI: 10.1186/s12967-024-04918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Cancer-testis antigens (CTAs) are tumor antigens that are normally expressed in the testes but are aberrantly expressed in several cancers. CTA overexpression drives the metastasis and progression of lung cancer, and is associated with poor prognosis. To improve lung cancer diagnosis, prognostic prediction, and drug discovery, robust CTA identification and quantitation is needed. In this study, we examined and quantified the co-expression of CTAs in lung cancer to derive cancer testis antigen burden (CTAB), a novel biomarker of immunotherapy response. METHODS Formalin fixed paraffin embedded (FFPE) tumor samples in discovery cohort (n = 5250) and immunotherapy and combination therapy treated non-small cell lung cancer (NSCLC) retrospective (n = 250) cohorts were tested by comprehensive genomic and immune profiling (CGIP), including tumor mutational burden (TMB) and the mRNA expression of 17 CTAs. PD-L1 expression was evaluated by IHC. CTA expression was summed to derive the CTAB score. The median CTAB score for the discovery cohort of 170 was applied to the retrospective cohort as cutoff for CTAB "high" and "low". Biomarker and gene expression correlation was measured by Spearman correlation. Kaplan-Meier survival analyses were used to detect overall survival (OS) differences, and objective response rate (ORR) based on RECIST criteria was compared using Fisher's exact test. RESULTS The CTAs were highly co-expressed (p < 0.05) in the discovery cohort. There was no correlation between CTAB and PD-L1 expression (R = 0.011, p = 0.45) but some correlation with TMB (R = 0.11, p = 9.2 × 10-14). Kaplan-Meier survival analysis of the immunotherapy-treated NSCLC cohort revealed better OS for the pembrolizumab monotherapy treated patients with high CTAB (p = 0.027). The combination group demonstrated improved OS compared to pembrolizumab monotherapy group (p = 0.04). The pembrolizumab monotherapy patients with high CTAB had a greater ORR than the combination therapy group (p = 0.02). CONCLUSIONS CTA co-expression can be reliably measured using CGIP in solid tumors. As a biomarker, CTAB appears to be independent from PD-L1 expression, suggesting that CTAB represents aspects of tumor immunogenicity not measured by current standard of care testing. Improved OS and ORR for high CTAB NSCLC patients treated with pembrolizumab monotherapy suggests a unique underlying aspect of immune response to these tumor antigens that needs further investigation.
Collapse
Affiliation(s)
- R J Seager
- OmniSeq (Labcorp Oncology), Buffalo, NY, USA
| | | | | | - Shuang Gao
- OmniSeq (Labcorp Oncology), Buffalo, NY, USA
| | | | | | | | | | - Heidi Ko
- Labcorp Oncology, Durham, NC, USA
| | | | - Kyle C Strickland
- Labcorp Oncology, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Rebecca A Previs
- Labcorp Oncology, Durham, NC, USA
- Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | | | | | | | | | - Shakti Ramkissoon
- Labcorp Oncology, Durham, NC, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | |
Collapse
|
4
|
Raza A, Mohsen R, Kanbour A, Zar Gul AR, Philip A, Vijayakumar S, Hydrose S, Prabhu KS, Al-Suwaidi AK, Inchakalody VP, Merhi M, Abo El-Ella DM, Tauro MA, Akbar S, Al-Bozom I, Abualainin W, Al-Abdulla R, Sirriya SA, Hassnad S, Uddin S, Mohamed Ibrahim MI, Al Homsi U, Demime S. Serum immune mediators as novel predictors of response to anti-PD-1/PD-L1 therapy in non-small cell lung cancer patients with high tissue-PD-L1 expression. Front Immunol 2023; 14:1157100. [PMID: 37256148 PMCID: PMC10225547 DOI: 10.3389/fimmu.2023.1157100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 06/01/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related morbidity and mortality worldwide. Immune checkpoint inhibitors (ICIs) including anti-PD-1 and anti-PD-L1 antibodies, have significantly changed the treatment outcomes with better overall survival, but only 15-40% of the patients respond to ICIs therapy. The search for predictive biomarkers of responses is warranted for better clinical outcomes. We aim here to identify pre-treatment soluble immune molecules as surrogate biomarkers for tissue PD-L1 (TPD-L1) status and as predictors of response to anti-PD-1/PD-L1 therapy in NSCLC patients. Sera from 31 metastatic NSCLC patients, eligible for anti-PD-1/PD-L1 or combined chemoimmunotherapy, were collected prior to treatment. Analysis of soluble biomarkers with TPD-L1 status showed significant up/down regulation of the immune inhibitory checkpoint markers (sSiglec7, sSiglec9, sULBP4 and sPD-L2) in patients with higher TPD-L1 (TPD-L1 >50%) expression. Moreover, correlation analysis showed significant positive linear correlation of soluble PD-L1 (sPD-L1) with higher TPD-L1 expression. Interestingly, only responders in the TPD-L1 >50% group showed significant down regulation of the immune inhibitory markers (sPD-L2, sTIMD4, sNectin2 and CEA). When responders vs. non-responders were compared, significant down regulation of other immune inhibitory biomarkers (sCD80, sTIMD4 and CEA) was recorded only in responding patients. In this, the optimal cut-off values of CD80 <91.7 pg/ml and CEA <1614 pg/ml were found to be significantly associated with better progression free survival (PFS). Indeed, multivariate analysis identified the cutoff-value of CEA <1614 pg/ml as an independent predictor of response in our patients. We identified here novel immune inhibitory/stimulatory soluble mediators as potential surrogate/predictive biomarkers for TPD-L1 status, treatment response and PFS in NSCLC patients treated with anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Afsheen Raza
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Reyad Mohsen
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Aladdin Kanbour
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Zar Gul
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Anite Philip
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Suma Vijayakumar
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S. Prabhu
- Translational Research Institute (TRI), Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Aisha Khamis Al-Suwaidi
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Dina M. Abo El-Ella
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Issam Al-Bozom
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Wafa Abualainin
- Diagnostic Genomic Division , Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Rajaa Al-Abdulla
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Shaza Abu Sirriya
- Diagnostic Genomic Division , Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Suparna Hassnad
- Department of Radiation Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad, Medical Corporation, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohamed Izham Mohamed Ibrahim
- Clinical Pharmacy and Practice Department, College of Pharmacy, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Ussama Al Homsi
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Demime
- Department of Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
5
|
Venkatesiah SS, Augustine D, Mishra D, Gujjar N, Haragannavar VC, Awan KH, Patil S. Immunology of Oral Squamous Cell Carcinoma-A Comprehensive Insight with Recent Concepts. Life (Basel) 2022; 12:1807. [PMID: 36362963 PMCID: PMC9695443 DOI: 10.3390/life12111807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
This review aims to understand the concept of oral cancer immunology through the notion of immune profiling, immunoediting and immunotherapy, and to gain knowledge regarding its application for the management of oral cancer patients. Oral cancer is an immunogenic tumor where the cells of the tumor microenvironment play an important role in tumorigenesis. Understanding the mechanism of these modulations can help design immunotherapeutic strategies in oral cancer patients. This article gives an overview of immunomodulation in the oral cancer tumor microenvironment, with concepts of immune profiling, immunoediting and immunotherapy. English literature searches via Google Scholar, Web of Science, EBSCO, Scopus, and PubMed database were performed with the key words immunology, tumor microenvironment, cells, cross talk, immune profiling, biomarkers, inflammation, gene expression, techniques, immunoediting, immunosurveillance, tumor escape, immunotherapy, immune checkpoint inhibitors, vaccines in cancer, oral cancer, and head and neck cancer. Original research articles, reviews, and case reports published from 2016-2021 (n = 81) were included to appraise different topics, and were discussed under the following subsections. Literature published on oral cancer immunology reveals that oral cancer immune profiling with appropriate markers and techniques and knowledge on immunoediting concepts can help design and play an effective role in immunotherapeutic management of oral cancer patients. An evaluation of oral cancer immunology helps to determine its role in tumorigenesis, and immunotherapy could be the emerging drift in the effective management of oral cancer.
Collapse
Affiliation(s)
- Sowmya Samudrala Venkatesiah
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Dominic Augustine
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Deepika Mishra
- Department of Oral Pathology & Microbiology, Centre for Dental Education and Research, All India Institute of Medical Sciences (AIIMS), Delhi 110608, India
| | - Neethi Gujjar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Vanishri C. Haragannavar
- Department of Oral Pathology & Microbiology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru 560054, India
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, India
| |
Collapse
|
6
|
Regulation of Quality of Life and Immune Function in Patients with Thyroid Cancer Treated by Deep Learning Technology. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3281039. [PMID: 36110975 PMCID: PMC9448623 DOI: 10.1155/2022/3281039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
Background In order to explore the regulation of quality of life and immune function in patients with thyroid cancer after radiotherapy, a method based on deep learning technology was proposed. A deep learning detection method for thyroid cancer is proposed. Methods It mainly includes three main modules: data preprocessing, thyroid cancer regional detection module, and thyroid cancer benign and malignant classification module. The data set in the experiment comes from LIDC-IDRI and is processed by the data preprocessing module to generate a standard data format that can be processed by the framework. The treatment of thyroid cancer can help patients relapse malignant thyroid cancer and prevent recurrence in advance. Results The results showed that most patients are diagnosed because of obvious swelling of local thyroid mass and conscious compression symptoms in the neck. At this time, they often miss the best treatment time, so as to reduce the surgical effect. Conclusions The metastasis and invasion of cancer cells are fast, the cancerous lesions are easy to form adhesion with the surrounding tracheal tissue, and the cancer cells invade the surrounding soft tissue, which is also easy to cause the cancerous tissue not to be completely removed. Clinical Trial Registration. Therefore, deep learning technology is used to treat residual cancerous lesions to ensure the surgical effect.
Collapse
|
7
|
Hernandez S, Rojas F, Laberiano C, Lazcano R, Wistuba I, Parra ER. Multiplex Immunofluorescence Tyramide Signal Amplification for Immune Cell Profiling of Paraffin-Embedded Tumor Tissues. Front Mol Biosci 2021; 8:667067. [PMID: 33996912 PMCID: PMC8118604 DOI: 10.3389/fmolb.2021.667067] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Every day, more evidence is revealed regarding the importance of the relationship between the response to cancer immunotherapy and the cancer immune microenvironment. It is well established that a profound characterization of the immune microenvironment is needed to identify prognostic and predictive immune biomarkers. To this end, we find phenotyping cells by multiplex immunofluorescence (mIF) a powerful and useful tool to identify cell types in biopsy specimens. Here, we describe the use of mIF tyramide signal amplification for labeling up to eight markers on a single slide of formalin-fixed, paraffin-embedded tumor tissue to phenotype immune cells in tumor tissues. Different panels show different markers, and the different panels can be used to characterize immune cells and relevant checkpoint proteins. The panel design depends on the research hypothesis, the cell population of interest, or the treatment under investigation. To phenotype the cells, image analysis software is used to identify individual marker expression or specific co-expression markers, which can differentiate already selected phenotypes. The individual-markers approach identifies a broad number of cell phenotypes, including rare cells, which may be helpful in a tumor microenvironment study. To accurately interpret results, it is important to recognize which receptors are expressed on different cell types and their typical location (i.e., nuclear, membrane, and/or cytoplasm). Furthermore, the amplification system of mIF may allow us to see weak marker signals, such as programmed cell death ligand 1, more easily than they are seen with single-marker immunohistochemistry (IHC) labeling. Finally, mIF technologies are promising resources for discovery of novel cancer immunotherapies and related biomarkers. In contrast with conventional IHC, which permits only the labeling of one single marker per tissue sample, mIF can detect multiple markers from a single tissue sample, and at the same time, deliver extensive information about the cell phenotypes composition and their spatial localization. In this matter, the phenotyping process is critical and must be done accurately by a highly trained personal with knowledge of immune cell protein expression and tumor pathology.
Collapse
Affiliation(s)
- Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frank Rojas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caddie Laberiano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
9
|
Hu Y, Chen X, Xu Y, Han X, Wang M, Gong T, Zhang ZR, John Kao W, Fu Y. Hierarchical assembly of hyaluronan coated albumin nanoparticles for pancreatic cancer chemoimmunotherapy. NANOSCALE 2019; 11:16476-16487. [PMID: 31453622 DOI: 10.1039/c9nr03684a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pancreatic cancer is a highly malignant carcinoma with limited effective treatment options, resulting in a poor patient survival rate of less than 5%. In this study, cationic albumin nanoparticles were assembled with negatively charged hyaluronic acid (HA) to achieve a hierarchical nanostructure and efficient delivery of small molecule drugs to the tumor site in the pancreas. A combination of chemotherapy with indoleamine-2,3-dioxygenase (IDO) inhibition was explored to enhance the chemotherapeutic efficacy in vivo. Hydrophobic celastrol (CLT) and hydrophilic 1-methyltryptophan (MT) were concurrently loaded in HA coated cationic albumin nanoparticles (HNPs) with an average size of ∼300 nm. The size of HNPs was reduced in the presence of hyaluronidase to facilitate penetration into deep tumor tissues. Also, the biodistribution study in the C57BL/6 mice xenograft model showed enhanced tumor accumulation and prolonged circulation of HNPs. Compared with CLT solution, the combination of CLT with MT showed significantly enhanced tumor inhibition in both xenograft and orthotopic pancreatic cancer mice models via downregulating the immunosuppressive tumor microenvironment. Taken together, the combination of CLT with MT administered via HNPs represents a highly promising strategy for targeted pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Hu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Xue Chen
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yingying Xu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Xianru Han
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Mou Wang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - W John Kao
- Department of Industrial and Manufacturing Systems Engineering, Biomedical Engineering, and Chemical Biology Centre, The University of Hong Kong, Pokfulam, HKSAR, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Janko C, Ratschker T, Nguyen K, Zschiesche L, Tietze R, Lyer S, Alexiou C. Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy. Front Oncol 2019; 9:59. [PMID: 30815389 PMCID: PMC6382019 DOI: 10.3389/fonc.2019.00059] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 01/21/2023] Open
Abstract
Standard cancer treatments involve surgery, radiotherapy, chemotherapy, and immunotherapy. In clinical practice, the respective drugs are applied orally or intravenously leading to their systemic circulation in the whole organism. For chemotherapeutics or immune modulatory agents, severe side effects such as immune depression or autoimmunity can occur. At the same time the intratumoral drug doses are often too low for effective cancer therapy. Since monotherapies frequently cannot cure cancer, due to their synergistic effects multimodal therapy concepts are applied to enhance treatment efficacy. The targeted delivery of drugs to the tumor by employment of functionalized nanoparticles might be a promising solution to overcome these challenges. For multimodal therapy concepts and individualized patient care nanoparticle platforms can be functionalized with compounds from various therapeutic classes (e.g. radiosensitizers, phototoxic drugs, chemotherapeutics, immune modulators). Superparamagnetic iron oxide nanoparticles (SPIONs) as drug transporters can add further functionalities, such as guidance or heating by external magnetic fields (Magnetic Drug Targeting or Magnetic Hyperthermia), and imaging-controlled therapy (Magnetic Resonance Imaging).
Collapse
Affiliation(s)
- Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Teresa Ratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Khanh Nguyen
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Zschiesche
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|