4
|
Rioja-Blanco E, Arroyo-Solera I, Álamo P, Casanova I, Gallardo A, Unzueta U, Serna N, Sánchez-García L, Quer M, Villaverde A, Vázquez E, León X, Alba-Castellón L, Mangues R. CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2022; 41:49. [PMID: 35120582 PMCID: PMC8815235 DOI: 10.1186/s13046-022-02267-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Therapy resistance, which leads to the development of loco-regional relapses and distant metastases after treatment, constitutes one of the major problems that head and neck squamous cell carcinoma (HNSCC) patients currently face. Thus, novel therapeutic strategies are urgently needed. Targeted drug delivery to the chemokine receptor 4 (CXCR4) represents a promising approach for HNSCC management. In this context, we have developed the self-assembling protein nanotoxins T22-PE24-H6 and T22-DITOX-H6, which incorporate the de-immunized catalytic domain of Pseudomonas aeruginosa (PE24) exotoxin A and the diphtheria exotoxin (DITOX) domain, respectively. Both nanotoxins contain the T22 peptide ligand to specifically target CXCR4-overexpressing HNSCC cells. In this study, we evaluate the potential use of T22-PE24-H6 and T22-DITOX-H6 nanotoxins for the treatment of HNSCC. METHODS T22-PE24-H6 and T22-DITOX-H6 CXCR4-dependent cytotoxic effect was evaluated in vitro in two different HNSCC cell lines. Both nanotoxins cell death mechanisms were assessed in HNSCC cell lines by phase-contrast microscopy, AnnexinV/ propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and western blotting. Nanotoxins antitumor effect in vivo was studied in a CXCR4+ HNSCC subcutaneous mouse model. Immunohistochemistry, histopathology, and toxicity analyses were used to evaluate both nanotoxins antitumor effect and possible treatment toxicity. GSMDE and CXCR4 expression in HNSCC patient tumor samples was also assessed by immunohistochemical staining. RESULTS First, we found that both nanotoxins exhibit a potent CXCR4-dependent cytotoxic effect in vitro. Importantly, nanotoxin treatment triggered caspase-3/Gasdermin E (GSDME)-mediated pyroptosis. The activation of this alternative cell death pathway that differs from traditional apoptosis, becomes a promising strategy to bypass therapy resistance. In addition, T22-PE24-H6 and T22-DITOX-H6 displayed a potent antitumor effect in the absence of systemic toxicity in a CXCR4+ subcutaneous HNSCC mouse model. Lastly, GSDME was found to be overexpressed in tumor tissue from HNSCC patients, highlighting the relevance of this strategy. CONCLUSIONS Altogether, our results show that T22-PE24-H6 and T22-DITOX-H6 represent a promising therapy for HNSCC patients. Remarkably, this is the first study showing that both nanotoxins are capable of activating caspase-3/GSDME-dependent pyroptosis, opening a novel avenue for HNSCC treatment.
Collapse
Affiliation(s)
- Elisa Rioja-Blanco
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
| | - Irene Arroyo-Solera
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Patricia Álamo
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Isolda Casanova
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Alberto Gallardo
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Ugutz Unzueta
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Miquel Quer
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Otorhinolaryngology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí, 89, 08041, Barcelona, Spain
- Department of Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona and CIBER, Bellaterra, Barcelona, Spain.
| | - Xavier León
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Otorhinolaryngology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí, 89, 08041, Barcelona, Spain
- Department of Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí, 89, 08041, Barcelona, Spain
| | - Lorena Alba-Castellón
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain.
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau and Josep Carreras Research Institute, 08041, Barcelona, Spain.
| | - Ramon Mangues
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Sant Quintí, 77, 08041, Barcelona, Spain.
- Institut de Recerca contra la Leucèmia Josep Carreras, 08025, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, 28029, Madrid, Spain.
- Institut d'Investigacions Biomèdiques Sant Pau, Hospital de Sant Pau, CIBER and Josep Carreras Research Institute, 08041, Barcelona, Spain.
| |
Collapse
|
5
|
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021; 9:1729. [PMID: 34829955 PMCID: PMC8615520 DOI: 10.3390/biomedicines9111729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Monoclonal antibodies (mAbs) are included among the treatment options for advanced colorectal cancer (CRC). However, while these mAbs effectively target cancer cells, they may have limited clinical activity. A strategy to improve their therapeutic potential is arming them with a toxic payload. Immunotoxins (ITX) combining the cell-killing ability of a toxin with the specificity of a mAb constitute a promising strategy for CRC therapy. However, several important challenges in optimizing ITX remain, including suboptimal pharmacokinetics and especially the immunogenicity of the toxin moiety. Nonetheless, ongoing research is working to solve these limitations and expand CRC patients' therapeutic armory. In this review, we provide a comprehensive overview of targets and toxins employed in the design of ITX for CRC and highlight a wide selection of ITX tested in CRC patients as well as preclinical candidates.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| |
Collapse
|
8
|
Mett V, Kurnasov OV, Bespalov IA, Molodtsov I, Brackett CM, Burdelya LG, Purmal AA, Gleiberman AS, Toshkov IA, Burkhart CA, Kogan YN, Andrianova EL, Gudkov AV, Osterman AL. A deimmunized and pharmacologically optimized Toll-like receptor 5 agonist for therapeutic applications. Commun Biol 2021; 4:466. [PMID: 33846531 PMCID: PMC8041767 DOI: 10.1038/s42003-021-01978-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
The Toll-like receptor 5 (TLR5) agonist entolimod, a derivative of Salmonella flagellin, has therapeutic potential for several indications including radioprotection and cancer immunotherapy. However, in Phase 1 human studies, entolimod induced a rapid neutralizing immune response, presumably due to immune memory from prior exposure to flagellated enterobacteria. To enable multi-dose applications, we used structure-guided reengineering to develop a next-generation, substantially deimmunized entolimod variant, GP532. GP532 induces TLR5-dependent NF-κB activation like entolimod but is smaller and has mutations eliminating an inflammasome-activating domain and key B- and T-cell epitopes. GP532 is resistant to human entolimod-neutralizing antibodies and shows reduced de novo immunogenicity. GP532 also has improved bioavailability, a stronger effect on key cytokine biomarkers, and a longer-lasting effect on NF-κB. Like entolimod, GP532 demonstrated potent prophylactic and therapeutic efficacy in mouse models of radiation-induced death and tissue damage. These results establish GP532 as an optimized TLR5 agonist suitable for multi-dose therapies and for patients with high titers of preexisting flagellin-neutralizing antibodies.
Collapse
Affiliation(s)
| | - Oleg V Kurnasov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Ivan Molodtsov
- Gamaleya Research Center of Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | | | | | | | | | | | - Andrei V Gudkov
- Genome Protection, Inc., Buffalo, NY, USA. .,Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
11
|
Falgàs A, Pallarès V, Serna N, Sánchez-García L, Sierra J, Gallardo A, Alba-Castellón L, Álamo P, Unzueta U, Villaverde A, Vázquez E, Mangues R, Casanova I. Selective delivery of T22-PE24-H6 to CXCR4 + diffuse large B-cell lymphoma cells leads to wide therapeutic index in a disseminated mouse model. Theranostics 2020; 10:5169-5180. [PMID: 32373205 PMCID: PMC7196303 DOI: 10.7150/thno.43231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Novel therapeutic strategies are urgently needed to reduce relapse rates and enhance survival in Diffuse Large B-Cell Lymphoma (DLBCL) patients. CXCR4-overexpressing cancer cells are good targets for therapy because of their association with dissemination and relapse in R-CHOP treated DLBCL patients. Immunotoxins that incorporate bacterial toxins are potentially effective in treating haematological neoplasias, but show a narrow therapeutic index due to the induction of severe side effects. Therefore, when considering the delivery of these toxins as cancer therapeutics, there is a need not only to increase their uptake in the target cancer cells, and their stability in blood, but also to reduce their systemic toxicity. We have developed a therapeutic nanostructured protein T22-PE24-H6 that incorporates exotoxin A from Pseudomonas aeruginosa, which selectively targets lymphoma cells because of its specific interaction with a highly overexpressed CXCR4 receptor (CXCR4+) in DLBCL. Methods: T22-PE24-H6 cytotoxicity and its dependence on the CXCR4 receptor were evaluated in DLBCL cell lines using cell viability assays. Different in vitro experiments (mitochondrial membrane potential, Western Blot, Annexin V and DAPI staining) were conducted to determine T22-PE24-H6 cell death mechanisms. In vivo imaging and therapeutic effect studies were performed in a disseminated DLBCL mouse model that mimics organ infiltration in DLBCL patients. Finally, immunohistochemistry and histopathology analyses were used to evaluate the antineoplastic effect and systemic toxicity. Results: In vitro, T22-PE24-H6 induced selective cell death of CXCR4+ DLBCL cells by activating the apoptotic pathway. In addition, repeated T22-PE24-H6 intravenous administration in a CXCR4+ DLBCL-disseminated mouse model showed a significant reduction of lymphoma burden in organs clinically affected by DLBCL cells (lymph nodes and bone marrow). Finally, we did not observe systemic toxicity associated to the nanoparticle treatment in non-DLBCL-infiltrated organs. Conclusion: We have demonstrated here a potent T22-PE24-H6 antineoplastic effect, especially in blocking dissemination in a CXCR4+ DLBCL model without associated toxicity. Thereby, T22-PE24-H6 promises to become an effective alternative to treat CXCR4+ disseminated refractory or relapsed DLBCL patients.
Collapse
|