1
|
Nagano M, Kubota K, Sakata A, Nakamura R, Yoshitomi T, Wakui K, Yoshimoto K. A neutralizable dimeric anti-thrombin aptamer with potent anticoagulant activity in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:762-772. [PMID: 37621412 PMCID: PMC10445101 DOI: 10.1016/j.omtn.2023.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Heparin-induced thrombocytopenia (HIT) is a complication caused by administration of the anticoagulant heparin. Although the number of patients with HIT has drastically increased because of coronavirus disease 2019 (COVID-19), the currently used thrombin inhibitors for HIT therapy do not have antidotes to arrest the severe bleeding that occurs as a side effect; therefore, establishment of safer treatments for HIT patients is imperative. Here, we devised a potent thrombin inhibitor based on bivalent aptamers with a higher safety profile via combination with the antidote. Using an anti-thrombin DNA aptamer M08s-1 as a promising anticoagulant, its homodimer and heterodimer with TBA29 linked by a conformationally flexible linker or a rigid duplex linker were designed. The dimerized M08s-1-based aptamers had about 100-fold increased binding affinity to human and mouse thrombin compared with the monomer counterparts. Administration of these bivalent aptamers into mice revealed that the anticoagulant activity of the dimers significantly surpassed that of an approved drug for HIT treatment, argatroban. Moreover, adding protamine sulfate as an antidote against the most potent bivalent aptamer completely suppressed the anticoagulant activity of the dimer. Emerging potent and neutralizable anticoagulant aptamers will be promising candidates for HIT treatment with a higher safety profile.
Collapse
Affiliation(s)
- Masanobu Nagano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Kazuki Kubota
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Rei Nakamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Koji Wakui
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Wagh AA, Kumar VA, Ravindranathan S, Fernandes M. Unlike RNA-TBA (rTBA), iso-rTBA, the 2'-5'-linked RNA-thrombin-binding aptamer, is a functional equivalent of TBA. Chem Commun (Camb) 2023; 59:1461-1464. [PMID: 36651344 DOI: 10.1039/d2cc05718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An antiparallel, functional RNA G-quadruplex of the 2'-5'-linked thrombin-binding aptamer (iso-rTBA) is reported for the first time. It can inhibit clotting and is remarkably stable to nuclease-degradation, besides having high thermal stability. It is thus, a superior candidate to TBA, rTBA or isoTBA, for further development as an anticoagulant.
Collapse
Affiliation(s)
- Atish A Wagh
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaijayanti A Kumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Ravindranathan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Central NMR Facility, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
| | - Moneesha Fernandes
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Torkamanian-Afshar M, Nematzadeh S, Tabarzad M, Najafi A, Lanjanian H, Masoudi-Nejad A. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm. Mol Divers 2021; 25:1395-1407. [PMID: 33554306 DOI: 10.1007/s11030-021-10192-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022]
Abstract
Aptamers can be regarded as efficient substitutes for monoclonal antibodies in many diagnostic and therapeutic applications. Due to the tedious and prohibitive nature of SELEX (systematic evolution of ligands by exponential enrichment), the in silico methods have been developed to improve the enrichment processes rate. However, the majority of these methods did not show any effort in designing novel aptamers. Moreover, some target proteins may have not any binding RNA candidates in nature and a reductive mechanism is needed to generate novel aptamer pools among enormous possible combinations of nucleotide acids to be examined in vitro. We have applied a genetic algorithm (GA) with an embedded binding predictor fitness function to in silico design of RNA aptamers. As a case study of this research, all steps were accomplished to generate an aptamer pool against aminopeptidase N (CD13) biomarker. First, the model was developed based on sequential and structural features of known RNA-protein complexes. Then, utilizing RNA sequences involved in complexes with positive prediction results, as the first-generation, novel aptamers were designed and top-ranked sequences were selected. A 76-mer aptamer was identified with the highest fitness value with a 3 to 6 time higher score than parent oligonucleotides. The reliability of obtained sequences was confirmed utilizing docking and molecular dynamic simulation. The proposed method provides an important simplified contribution to the oligonucleotide-aptamer design process. Also, it can be an underlying ground to design novel aptamers against a wide range of biomarkers.
Collapse
Affiliation(s)
- Mahsa Torkamanian-Afshar
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Computer Technologies, Beykent University, Istanbul, Turkey
| | - Sajjad Nematzadeh
- Department of Computer Technologies, Beykent University, Istanbul, Turkey
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi-Nejad
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Kosman J, Juskowiak B. Thrombin-Binding Aptamer with Inversion of Polarity Sites (IPS): Effect on DNAzyme Activity and Anticoagulant Properties. Int J Mol Sci 2021; 22:ijms22157902. [PMID: 34360665 PMCID: PMC8347255 DOI: 10.3390/ijms22157902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023] Open
Abstract
In this work we examined the properties of thrombin-binding aptamer (TBA) modified by the introduction of inversion of polarity sites (IPS) in order to assess the effect of modification on the activation of TBA to serve as DNAzyme with peroxidase-like activity. Two oligonucleotides were designed to possess one (IPS1) or three (IPS2) inversion sites. TBA typically forms antiparallel G-quadruplexes with two G-tetrads, which exhibits very low DNAzyme peroxidise activity. DNAzyme activity is generally attributed to parallel G-quadruplexes. Hence, inversion of polarity was introduced in the TBA molecule to force the change of G-quadruplex topology. All oligonucleotides were characterized using circular dichroism and UV-Vis melting profiles. Next, the activity of the DNAzymes formed by studied oligonucleotides and hemin was investigated. The enhancement of peroxidase activity was observed when inversion of polarity was introduced. DNAzyme based on IPS2 showed the highest peroxidase activity in the presence of K+ or NH4+ ions. This proves that inversion of polarity can be used to convert a low-activity DNAzyme into a DNAzyme with high activity. Since TBA is known for its anticoagulant properties, the relevant experiments with IPS1 and IPS2 oligonucleotides were performed. Both IPS1 and IPS2 retain some anticoagulant activity in comparison to TBA in the reaction with fibrinogen. Additionally, the introduction of inversion of polarity makes these oligonucleotides more resistant to nucleases.
Collapse
|
5
|
Tsukakoshi K, Yamagishi Y, Kanazashi M, Nakama K, Oshikawa D, Savory N, Matsugami A, Hayashi F, Lee J, Saito T, Sode K, Khunathai K, Kuno H, Ikebukuro K. G-quadruplex-forming aptamer enhances the peroxidase activity of myoglobin against luminol. Nucleic Acids Res 2021; 49:6069-6081. [PMID: 34095949 PMCID: PMC8216272 DOI: 10.1093/nar/gkab388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023] Open
Abstract
Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin's peroxidase activity was discovered. Through our strategy—in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.
Collapse
Affiliation(s)
- Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasuko Yamagishi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mana Kanazashi
- DENSO CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Kenta Nakama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daiki Oshikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Akimasa Matsugami
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Fumiaki Hayashi
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Jinhee Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Taiki Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | | | - Hitoshi Kuno
- DENSO CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Overview of the Therapeutic Potential of Aptamers Targeting Coagulation Factors. Int J Mol Sci 2021; 22:ijms22083897. [PMID: 33918821 PMCID: PMC8069679 DOI: 10.3390/ijms22083897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences that bind target molecules with high specificity and affinity. Aptamers exhibit several notable advantages over protein-based therapeutics. Aptamers are non-immunogenic, easier to synthesize and modify, and can bind targets with greater affinity. Due to these benefits, aptamers are considered a promising therapeutic candidate to treat various conditions, including hematological disorders and cancer. An active area of research involves developing aptamers to target blood coagulation factors. These aptamers have the potential to treat cardiovascular diseases, blood disorders, and cancers. Although no aptamers targeting blood coagulation factors have been approved for clinical use, several aptamers have been evaluated in clinical trials and many more have demonstrated encouraging preclinical results. This review summarized our knowledge of the aptamers targeting proteins involved in coagulation, anticoagulation, fibrinolysis, their extensive applications as therapeutics and diagnostics tools, and the challenges they face for advancing to clinical use.
Collapse
|
7
|
Koudrina A, McConnell EM, Zurakowski JA, Cron GO, Chen S, Tsai EC, DeRosa MC. Exploring the Unique Contrast Properties of Aptamer-Gadolinium Conjugates in Magnetic Resonance Imaging for Targeted Imaging of Thrombi. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9412-9424. [PMID: 33395250 DOI: 10.1021/acsami.0c16666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Objective: An important clinical question in the determination of the extent of thrombosis-related vascular conditions is the identification of blood clot location. Fibrin is a major molecular constituent of blood clots and can, therefore, be utilized in molecular imaging. In this proof-of-concept study, we sought to prepare a fibrin-targeting magnetic resonance imaging contrast agent, using a Gd(III)-loaded fibrinogen aptamer (FA) chelate conjugate (Gd(III)-NOTA-FA) (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid), to endow the ability to specifically accumulate at the location of blood clots, thereby enhancing contrast capabilities. Methods: The binding affinity of FA for fibrin was confirmed by fluorescence microscopy and microscale thermophoresis. The preparation and effective loading of the chelate-aptamer conjugates were confirmed by mass spectrometry and a xylenol orange colorimetric test. Longitudinal and transverse relaxivities and the effects of target binding were assessed using T1- and T2-map sequences at 7 T. T1- and T2-weighted images were acquired after blood clots were treated with Gd(III)-NOTA-FA. Collagen was used as the protein control, while an unrelated aptamer sequence, FB139, was used as the aptamer control. Results: FA demonstrated a high affinity and selectivity toward the polymeric protein, with a Kd of 16.6 nM, confirming an avidity over fibrinogen. The longitudinal (r1) and transverse (r2) relaxivities of Gd(III)-NOTA-FA demonstrated that conjugation to the long aptamer strand shortened T1 relaxation times and increased T2 relaxation times (3.04 and 38.7 mM-1 s-1, respectively). These effects were amplified by binding to the fibrin target (1.73 and 46.5 mM-1 s-1, respectively). In vitro studies with thrombin-polymerized human blood (clots) in whole blood showed an unexpected enhancement of signal intensity (hyperintense) produced exclusively at the location of the clot during the T2-weighted scan, while the presence of fibrinogen within a whole blood pool resulted in T1 signal intensity enhancement throughout the pool. This is advantageous, as simply reversing the type of a scan from a typical T1-weighted to a T2-weighted would allow to selectively highlight the location of blood clots. Conclusions: Gd(III)-NOTA-FA can be used for molecular imaging of thrombi, through fibrin-targeted delivery of contrast to the location of blood clots in T2-weighted scans.
Collapse
Affiliation(s)
- Anna Koudrina
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Erin M McConnell
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| | - Joseph A Zurakowski
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Greg O Cron
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Radiology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Suzan Chen
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Eve C Tsai
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Jin H. Perspectives of Aptamers for Medical Applications. APTAMERS FOR MEDICAL APPLICATIONS 2021:405-462. [DOI: 10.1007/978-981-33-4838-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Shatunova EA, Korolev MA, Omelchenko VO, Kurochkina YD, Davydova AS, Venyaminova AG, Vorobyeva MA. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020; 8:biomedicines8110527. [PMID: 33266394 PMCID: PMC7700471 DOI: 10.3390/biomedicines8110527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers’ research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects in the field, and issues that have yet to be addressed.
Collapse
Affiliation(s)
- Elizaveta A. Shatunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Maksim A. Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Vitaly O. Omelchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Yuliya D. Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
- Correspondence:
| |
Collapse
|
10
|
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020; 25:E5227. [PMID: 33182593 PMCID: PMC7698228 DOI: 10.3390/molecules25225227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
- Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; (E.N.); (D.M.); (D.M.)
| |
Collapse
|
11
|
Sakai K, Someya T, Harada K, Yagi H, Matsui T, Matsumoto M. Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab. Haematologica 2020; 105:2631-2638. [PMID: 33131252 PMCID: PMC7604614 DOI: 10.3324/haematol.2019.235549] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 11/09/2022] Open
Abstract
von Willebrand factor (VWF) is a blood glycoprotein that plays an important role in platelet thrombus formation through interaction between its A1 domain and platelet glycoprotein Ib. ARC1779, an aptamer to the VWF A1 domain, was evaluated in a clinical trial for acquired thrombotic thrombocytopenic purpura (aTTP). Subsequently, caplacizumab, an anti-VWF A1 domain nanobody, was approved for aTTP in Europe and the United States. We recently developed a novel DNA aptamer, TAGX-0004, to the VWF A1 domain; it contains an artificial base and demonstrates high affinity for VWF. To compare the effects of these three agents on VWF A1, their ability to inhibit ristocetin- or botrocetin-induced platelet aggregation under static conditions was analyzed, and the inhibition of thrombus formation under high shear stress was investigated in a microchip flow chamber system. In both assays, TAGX-0004 showed stronger inhibition than ARC1779, and had comparable inhibitory effects to caplacizumab. The binding sites of TAGX-0004 and ARC1779 were analyzed with surface plasmon resonance performed using alanine scanning mutagenesis of the VWF A1 domain. An electrophoretic mobility shift assay showed that R1395 and R1399 in the A1 domain bound to both aptamers. R1287, K1362, and R1392 contributed to ARC1779 binding, and F1366 was essential for TAGX-0004 binding. Surface plasmon resonance analysis of the binding sites of caplacizumab identified five amino acids in the VWF A1 domain (K1362, R1392, R1395, R1399, and K1406). These results suggested that TAGX-0004 possessed better pharmacological properties than caplacizumab in vitro and might be similarly promising for aTTP treatment.
Collapse
Affiliation(s)
- Kazuya Sakai
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara
| | | | | | - Hideo Yagi
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara
| | - Taei Matsui
- Clinical Laboratory Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara
| |
Collapse
|
12
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
13
|
Abstract
Von Willebrand factor has a pivotal role in primary hemostasis. Its role in thrombotic microangiopathies (TMA), as well as cardiovascular disease, has been demonstrated. Thrombotic thrombocytopenic purpura (TTP), a thrombotic microangiopathy, is a life-threatening condition with a high mortality rate if untreated. Current management strategies comprise plasma exchange to remove autoantibodies and replenish ADAMTS13, along with immunosuppressive agents in immune TTP. This review focuses on novel antiplatelet strategies that target VWF and GPIb. The benefits of the nanobody caplacizumab in achieving faster normalization of platelet count, as well as reduced thromboembolic events were shown through TITAN and HERCULES trials, and these findings have been practice changing. The use of caplacizumab in patients with immune TTP (iTTP) has now become well established. Potential benefits of ARC1779 and N-acetylcysteine have also been shown on a small scale in iTTP, however these lack evidence through larger randomized controlled trials. Further therapies, some in early phase, others in clinical practice, target platelet aggregation within arteries and their utility is presented with cerebrovascular disorders.
Collapse
Affiliation(s)
- Nithya Prasannan
- Department of Haematology, University College London Hospital , London, UK
| | - Marie Scully
- Department of Haematology, University College London Hospital , London, UK.,Cardiometabolic Programme - NIHR UCLH/UCL Biomedical Research Centre, London, UK
| |
Collapse
|
14
|
Smith MH, Fologea D. Kinetic Exclusion Assay of Biomolecules by Aptamer Capture. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3442. [PMID: 32570818 PMCID: PMC7348807 DOI: 10.3390/s20123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022]
Abstract
DNA aptamers are short nucleotide oligomers selected to bind a target ligand with affinity and specificity rivaling that of antibodies. These remarkable features recommend aptamers as candidates for analytical and therapeutic applications that traditionally use antibodies as biorecognition elements. Numerous traditional and emerging analytical techniques have been proposed and successfully implemented to utilize aptamers for sensing purposes. In this work, we exploited the analytical capabilities offered by the kinetic exclusion assay technology to measure the affinity of fluorescent aptamers for their thrombin target and quantify the concentration of analyte in solution. Standard binding curves constructed by using equilibrated mixtures of aptamers titrated with thrombin were fitted with a 1:1 binding model and provided an effective Kd of the binding in the sub-nanomolar range. However, our experimental results suggest that this simple model does not satisfactorily describe the binding process; therefore, the possibility that the aptamer is composed of a mixture of two or more distinct Kd populations is discussed. The same standard curves, together with a four-parameter logistic equation, were used to determine "unknown" concentrations of thrombin in mock samples. The ability to identify and characterize complex binding stoichiometry, together with the determination of target analyte concentrations in the pM-nM range, supports the adoption of this technology for kinetics, equilibrium, and analytical purposes by employing aptamers as biorecognition elements.
Collapse
Affiliation(s)
- Mark H. Smith
- Department of Physics, Boise State University, 1910 University Drive, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Programs, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, 1910 University Drive, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Programs, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| |
Collapse
|
15
|
Mignani S, Shi X, Ceña V, Majoral JP. Dendrimer- and polymeric nanoparticle-aptamer bioconjugates as nonviral delivery systems: a new approach in medicine. Drug Discov Today 2020; 25:1065-1073. [PMID: 32283193 PMCID: PMC7151348 DOI: 10.1016/j.drudis.2020.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Aptamers are RNA or DNA oligonucleotides interacting to form unique 3D target conformations with high affinity and specificity, and are emerging as a powerful class of ligands for therapeutic applications. In addition, dendrimers are well-defined nano-sized symmetric polymeric molecules. In this review, we provide an analysis of the use of dendrimers modified with aptamers as nonviral vectors to specifically target tumor cells. Various anticancer agents have been encapsulated with dendrimers complexing with aptamers, including epirubicin, camptothecin, Bcl-xL short hairpin (sh)RNA, and 5-fluorouracil rhodamine-labeled dextran. Other types of polymeric nanoparticle (NP)-aptamer bioconjugates have also been developed and loaded with Pt(IV) derivatives, to target specific tumor cells.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Xangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Valentin Ceña
- CIBERNED, ISCII, Madrid, Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Avda. Almansa, 14, 02006 Albacete, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
16
|
Diagnostic and Therapeutic Value of Aptamers in Envenomation Cases. Int J Mol Sci 2020; 21:ijms21103565. [PMID: 32443562 PMCID: PMC7278915 DOI: 10.3390/ijms21103565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
It is now more than a century since Albert Calmette from the Institut Pasteur changed the world of envenomation by demonstrating that antibodies raised against animal venoms have the ability to treat human victims of previously fatal bites or stings. Moreover, the research initiated at that time effectively launched the discipline of toxicology, first leading to the search for toxic venom components, followed by the demonstration of venoms that also contained compounds of therapeutic value. Interest from pharmaceutical companies to treat envenomation is, however, declining, mainly for economic reasons, and hence, the World Health Organization has reclassified this public health issue to be a highest priority concern. While the production, storage, and safety of antivenom sera suffer from major inconveniences, alternative chemical and technological approaches to the problem of envenomation need to be considered that bypass the use of antibodies for toxin neutralization. Herein, we review an emerging strategy that relies on the use of aptamers and discuss how close—or otherwise—we are to finding a viable alternative to the use of antibodies for the therapy of human envenomation.
Collapse
|
17
|
Kimoto M, Hirao I. New Research Area, Xenobiology, by Integrating Chemistry and Biology. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Ichiro Hirao
- Institute of Bioengineering and Nanotechnology, A*STAR
| |
Collapse
|
18
|
Torkamanian-Afshar M, Lanjanian H, Nematzadeh S, Tabarzad M, Najafi A, Kiani F, Masoudi-Nejad A. RPINBASE: An online toolbox to extract features for predicting RNA-protein interactions. Genomics 2020; 112:2623-2632. [DOI: 10.1016/j.ygeno.2020.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/04/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
|
19
|
Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor. MICROMACHINES 2020; 11:mi11050464. [PMID: 32354154 PMCID: PMC7281654 DOI: 10.3390/mi11050464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Thrombin generation is a complex and finely regulated pathway that provokes dynamical changes of thrombin concentration in blood when a vascular injury occurs. In order to characterize the initiation phase of such process, when thrombin concentration is in the nM range, a label-free optical aptasensor is proposed here. This aptasensor combines a 1D photonic crystal structure consisting of a silicon corrugated waveguide with thrombin binding aptamers on its surface as bioreceptors. As a result, this aptasensor has been demonstrated to specifically detect thrombin concentrations ranging from 270 pM to 27 nM with an estimated detection limit of 33.5 pM and a response time of ~2 min. Furthermore, it has also been demonstrated that this aptasensor is able to continuously respond to consecutive increasing concentrations of thrombin and to detect binding events as they occur. All these features make this aptasensor a good candidate to continuously study how thrombin concentration progressively increases during the initiation phase of the coagulation cascade.
Collapse
|
20
|
Jiang Z, Thayumanavan S. Non-cationic Material Design for Nucleic Acid Delivery. ADVANCED THERAPEUTICS 2020; 3:1900206. [PMID: 34164572 PMCID: PMC8218910 DOI: 10.1002/adtp.201900206] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022]
Abstract
Nucleic acid delivery provides effective options to control intracellular gene expression and protein production. Efficient delivery of nucleic acid typically requires delivery vehicles to facilitate the entry of nucleic acid into cells. Among non-viral delivery vehicles, cationic materials are favored because of their high loading capacity of nucleic acids and prominent cellular uptake efficiency through electrostatic interaction. However, cationic moieties at high dosage tend to induce severe cytotoxicity due to the interference on cell membrane integrity. In contrast, non-cationic materials present alternative delivery approaches with less safety concerns than cationic materials. In this Progress Report, principles of non-cationic material design for nucleic acid delivery are discussed. Examples of such non-cationic platforms are highlighted, including complexation or conjugation with nucleic acids and self-assembled nucleic acid structures.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
21
|
McConnell EM, Cozma I, Morrison D, Li Y. Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Anal Chem 2019; 92:327-344. [PMID: 31656066 DOI: 10.1021/acs.analchem.9b04868] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Ioana Cozma
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1.,Department of Surgery, Division of General Surgery , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| |
Collapse
|