1
|
Zhang S, Guan Z, Xia Q, Shen C, Hu H, Wang J. Bioinformatics analysis of ERCC family in pan-cancer and ERCC2 in bladder cancer. Front Immunol 2024; 15:1402548. [PMID: 39192988 PMCID: PMC11347307 DOI: 10.3389/fimmu.2024.1402548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) in DNA repair genes can impair protein function and hinder DNA repair, leading to genetic instability and increased cancer risk. The Excision Repair Cross-Complementation (ERCC) family plays a crucial role in nucleotide excision repair, yet their comprehensive multi-omics characterization and roles in tumor prognosis and immune microenvironment remain unexplored. Methods and materials We performed bioinformatics analysis using publicly available data from 33 cancer types to investigate associations between ERCC gene expression, patient prognosis, and clinical features. We also validated the role of ERCC2 in bladder cancer through in vitro assays, including CCK-8, colony formation, wound healing, and Transwell assays. Results By utilizing the most recent database, we have conducted an analysis that reveals associations between variations in ERCC expression across multiple cancer types and both patient prognosis and the tumor microenvironment. To ensure the reliability of our findings, we applied the Benjamini-Hochberg procedure to adjust for multiple testing. After correction, we identified that ERCC expression levels remained significantly correlated with patient prognosis in various cancer types (p < 0.05). In addition, according to the results of drug sensitivity studies of anticancer drugs, there is a large correlation between ERCC expression and the sensitivity of different anticancer drugs. Finally, in vitro cell behavioral assays determined that knockdown of ERCC2 gene expression significantly inhibited the proliferation, migration and invasion of bladder cancer cells. Conclusion Through in-depth exploration of ERCC differential expression and its correlation with immune-related indicators, the unique microenvironment of tumors, and patient prognosis, we verified the potential role of ERCC2 in the process of bladder cancer genesis and progression. Therefore, we believe that the ERCC family of genes is expected to be a new option for cancer treatment and deserves to be further explored in the future.
Collapse
Affiliation(s)
- Siyang Zhang
- Department of Urology, The affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Zhenghui Guan
- Department of Urology, The affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
- Postgraduate Training Base of Dalian Medical University, The affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Qiangqiang Xia
- Emergency Surgery, Yongcheng People’s Hospital of Henan Province, Henan, Shangqiu, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jiangping Wang
- Department of Urology, The affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
2
|
Khan K, Albalawi K, Abbas MN, Burki S, Musad Saleh EA, Al Mouslem A, Alsaiari AA, A Zaki ME, Khan AU, Alotaibi G, Jalal K. Pharmacokinetics and drug-likeness of anti-cancer traditional Chinese medicine: molecular docking and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:3295-3306. [PMID: 37279114 DOI: 10.1080/07391102.2023.2216758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 06/08/2023]
Abstract
MCM7 (Minichromosome Maintenance Complex Component 7) is a component of the DNA replication licensing factor, which controls DNA replication. The MCM7 protein is linked to tumor cell proliferation and has a function in the development of several human cancers. Several types of cancer may be treated by inhibiting the protein, as it is strongly produced throughout this process. Significantly, Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant use against cancer, is rapidly gaining traction as a valuable medical resource for the development of novel cancer therapies, including immunotherapy. Therefore, the goal of the research was to find small molecular therapeutic candidates against the MCM7 protein that may be used to treat human cancers. A computational-based virtual screening of 36,000 natural TCM libraries is carried out for this goal using a molecular docking and dynamic simulation technique. Thereby, ∼8 novel potent compounds i.e., ZINC85542762, ZINC95911541, ZINC85542617, ZINC85542646, ZINC85592446, ZINC85568676, ZINC85531303, and ZINC95914464 were successfully shortlisted, each having the capacity to penetrate the cell as potent inhibitors for MCM7 to curb this disorder. These selected compounds were found to have high binding affinities compared to the reference (AGS compound) i.e. < -11.0 kcal/mol. ADMET and pharmacological properties showed that none of these 8 compounds poses any toxic property (carcinogenicity) and have anti-metastatic, and anticancer activity. Additionally, MD simulations were run to assess the compounds' stability and dynamic behavior with the MCM7 complex for about 100 ns. Finally, ZINC95914464, ZINC95911541, ZINC85568676, ZINC85592446, ZINC85531303, and ZINC85542646 are identified as highly stable within the complex throughout the 100 ns simulations. Moreover, the results of binding free energy suggested that the selected virtual hits significantly bind to the MCM7 which implied these compounds may act as a potential MCM7 inhibitor. However, in vitro testing protocols are required to further support these results. Further, assessment through various lab-based trial methods can assist with deciding the action of the compound that will give options in contrast to human cancer immunotherapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Karma Albalawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Samiullah Burki
- Institute of Pharmaceutical Sciences, Jinnah Sindh medical University, Karachi, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Chemistry Department, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir, Saudi Arabia
| | - Abdulaziz Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, PR China
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, KSA
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
3
|
Chen C, Zhang Y, Lin Y, Shen C, Zhang Z, Wu Z, Qie Y, Zhao G, Hu H. The prognostic significance and immune characteristics of bone morphogenetic proteins (BMPs) family: A pan-cancer multi-omics analysis. Technol Health Care 2024; 32:4123-4175. [PMID: 39031404 PMCID: PMC11613112 DOI: 10.3233/thc-232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are a group of cancer-related proteins vital for development and progression of certain cancer types. Nevertheless, function of BMP family in pan-cancer was not detailedly researched. OBJECTIVE Investigating expression pattern and prognostic value of the BMPs family (BMP1-8A and BMP8B) expression across multiple cancer types. METHODS Our research integrated multi-omics data for exploring potential associations between BMPs expression and prognosis, clinicopathological characteristics, copy number or somatic mutations, immune characteristics, tumor microenvironment (TME), tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint genes and drug sensitivity in The Cancer Genome Atlas (TCGA) tumors. Furthermore, association of BMPs expression and immunotherapy effectiveness was investigated in some confirmatory cohorts (GSE111636, GSE78220, GSE67501, GSE176307, IMvigor210 and mRNA sequencing data from currently undergoing TRUCE01 clinical research included), and biological function and potential signaling pathways of BMPs in bladder cancer (BCa) was explored via Gene Set Enrichment Analysis (GSEA). Eventually, immune infiltration analysis was done via BMPs expression, copy number or somatic mutations in BCa, as well as validation of the expression levels by reverse transcription-quantitative PCR and western blot, and in vitro functional experiments of BMP8A. RESULTS Discoveries displayed BMPs expression was related to prognosis, clinicopathological characteristics, mutations, TME, TMB, MSI and immune checkpoint genes of TCGA tumors. Anticancer drug sensitivity analysis displayed BMPs were associated with various drug sensitivities. What's more, it was discovered that expression level of certain BMP family members related to objective response to immunotherapy. By GSEA, we discovered multiple immune-associated functions and pathways were enriched. Immune infiltration analysis on BCa also displayed significant associations among BMPs copy number variations, mutation status and infiltration level of diverse immune cells. Furthermore, differential expression validation and in vitro phenotypic experiment indicated that BMP8A significantly promoted BCa cell proliferation, migration and invasion. CONCLUSIONS Current results confirmed significance of both BMPs expression and genomic alteration in the prognosis and treatment of diverse cancer types, and suggested that BMPs may be vital for BCa and can possibly be utilized as biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Changsheng Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Tianjin Haihe Hospital, Tianjin, China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Eco-City Hospital of Tianjin Fifth Central Hospital, Tianjin, China
| | - Yuda Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Jiang S, Wang T, Zhang KH. Data-driven decision-making for precision diagnosis of digestive diseases. Biomed Eng Online 2023; 22:87. [PMID: 37658345 PMCID: PMC10472739 DOI: 10.1186/s12938-023-01148-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Modern omics technologies can generate massive amounts of biomedical data, providing unprecedented opportunities for individualized precision medicine. However, traditional statistical methods cannot effectively process and utilize such big data. To meet this new challenge, machine learning algorithms have been developed and applied rapidly in recent years, which are capable of reducing dimensionality, extracting features, organizing data and forming automatable data-driven clinical decision systems. Data-driven clinical decision-making have promising applications in precision medicine and has been studied in digestive diseases, including early diagnosis and screening, molecular typing, staging and stratification of digestive malignancies, as well as precise diagnosis of Crohn's disease, auxiliary diagnosis of imaging and endoscopy, differential diagnosis of cystic lesions, etiology discrimination of acute abdominal pain, stratification of upper gastrointestinal bleeding (UGIB), and real-time diagnosis of esophageal motility function, showing good application prospects. Herein, we reviewed the recent progress of data-driven clinical decision making in precision diagnosis of digestive diseases and discussed the limitations of data-driven decision making after a brief introduction of methods for data-driven decision making.
Collapse
Affiliation(s)
- Song Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| |
Collapse
|
5
|
Non-Association of Driver Alterations in PTEN with Differential Gene Expression and Gene Methylation in IDH1 Wildtype Glioblastomas. Brain Sci 2023; 13:brainsci13020186. [PMID: 36831729 PMCID: PMC9953940 DOI: 10.3390/brainsci13020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
During oncogenesis, alterations in driver genes called driver alterations (DAs) modulate the transcriptome, methylome and proteome through oncogenic signaling pathways. These modulatory effects of any DA may be analyzed by examining differentially expressed mRNAs (DEMs), differentially methylated genes (DMGs) and differentially expressed proteins (DEPs) between tumor samples with and without that DA. We aimed to analyze these modulations with 12 common driver genes in Isocitrate Dehydrogenase 1 wildtype glioblastomas (IDH1-W-GBs). Using Cbioportal, groups of tumor samples with and without DAs in these 12 genes were generated from the IDH1-W-GBs available from "The Cancer Genomics Atlas Firehose Legacy Study Group" (TCGA-FL-SG) on Glioblastomas (GBs). For all 12 genes, samples with and without DAs were compared for DEMs, DMGs and DEPs. We found that DAs in PTEN were unassociated with any DEM or DMG in contrast to DAs in all other drivers, which were associated with several DEMs and DMGs. This contrasting PTEN-related property of being unassociated with differential gene expression or methylation in IDH1-W-GBs was unaffected by concurrent DAs in other common drivers or by the types of DAs affecting PTEN. From the lists of DEMs and DMGs associated with some common drivers other than PTEN, enriched gene ontology terms and insights into the co-regulatory effects of these drivers on the transcriptome were obtained. The findings from this study can improve our understanding of the molecular mechanisms underlying gliomagenesis with potential therapeutic benefits.
Collapse
|
6
|
Wu Y, Dong X, Hu J, Wang L, Xu R, Wang Y, Zeng Y. Transcriptomics Based Network Analyses and Molecular Docking Highlighted Potentially Therapeutic Biomarkers for Colon Cancer. Biochem Genet 2023:10.1007/s10528-023-10333-9. [PMID: 36645555 DOI: 10.1007/s10528-023-10333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
In this study, machine learning-based multiple bioinformatics analysis was carried out for the purpose of the deep and efficient mining of high-throughput transcriptomics data from the TCGA database. Compared with normal colon tissue, 2469 genes were significantly differentially expressed in colon cancer tissue. Gene functional annotation and pathway analysis suggested that most DEGs were functionally related to the cell cycle and metabolism. Weighted gene co-expression network analysis revealed a significant module and the enriched genes that were closely related to fatty acid degradation and metabolism. Based on colon cancer progression, the trend analysis highlighted that several gene sets were significantly correlated with disease development. At the same time, the most specific genes were functionally related to cancer cell features such as the high performance of DNA replication and cell division. Moreover, survival analysis and target drug prediction were performed to prioritize reliable biomarkers and potential drugs. In consideration of a combination of different evidence, four genes (ACOX1, CPT2, CDC25C and PKMYT1) were suggested as novel biomarkers in colon cancer. The potential biomarkers and target drugs identified in our study may provide new ideas for colonic-related prevention, diagnosis, and treatment; therefore, our results have high clinical value for colon cancer.
Collapse
Affiliation(s)
- Yun Wu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Xiaoping Dong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Jia Hu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lingxiang Wang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Rongfang Xu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Yongjun Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Yong Zeng
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China. .,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
7
|
Zhang X, Chen H, Lin H, Wen R, Yang F. High-Throughput Screening and Molecular Dynamics Simulation of Natural Products for the Identification of Anticancer Agents against MCM7 Protein. Appl Bionics Biomech 2022; 2022:8308192. [PMID: 36157125 PMCID: PMC9499818 DOI: 10.1155/2022/8308192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Minichromosome maintenance complex component 7 (MCM7) belongs to the minichromosome maintenance family that is necessary for the initiation of eukaryotic DNA replication. Overexpression of the MCM7 protein is linked to cellular proliferation and is accountable for critical malignancy in many cancers. Mechanistically, the suppression of MCM7 greatly lowers the cellular proliferation associated with cancer. Advances in immunotherapy have revolutionized treatments for many types of cancer. To date, no effective small molecular candidate has been found that can stop the advancement of cancer produced by the MCM7 protein. Here, we present the findings of methods that used a combination of structure-assisted drug design, high-throughput virtual screening, and simulations studies to swiftly generate lead compounds against MCM7 protein. In the current study, we designed efficient compounds that may combat all emerging cancer targeting the common MCM7 protein. For this objective, a molecular docking and molecular dynamics (MD) simulation-based virtual screening of 29,000 NPASS library was carried out. As a consequence of using specific pharmacological, physiological, and ADMET criteria, four new prevailing compounds, NPA000018, NPA000111, NPA00305, and NPA014826, were successfully selected. The MD simulations were also used for a time period of 50 ns to evaluate for stability and dynamics behavior of the compounds. Eventually, compounds NPA000111 and NPA014826 were found to be highly potent against MCM7 protein. According to our results, the selected compounds may be effective in treating certain cancer subtypes, for which additional follow-up experimental validation is recommended.
Collapse
Affiliation(s)
- Xin Zhang
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Hui Chen
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Hui Lin
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Ronglan Wen
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| | - Fan Yang
- Breast Surgery Department, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou 350009, China
| |
Collapse
|
8
|
de Assis JV, Coutinho LA, Oyeyemi IT, Oyeyemi OT, Grenfell RFEQ. Diagnostic and therapeutic biomarkers in colorectal cancer: a review. Am J Cancer Res 2022; 12:661-680. [PMID: 35261794 PMCID: PMC8900002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a public health concern and the second most common type of cancer among men and women causing a significant mortality. Biomarkers closely linked to the disease morbidity could holds potential as diagnostic and/or prognostic biomarker for the disease. This review provides an overview of recent advances in the search for colorectal cancer biomarkers through genomics and proteomics according to clinical function and application. Specifically, a number of biomarkers were identified and discussed. Emphasis was placed on their clinical applications relative to the diagnosis and prognosis of CRC. The discovery of more sensitive and specific markers for CRC is an urgent need, and the study of molecular targets is extremely important in this process, as they will allow for a better understanding of colorectal carcinogenesis, identification and validation of potential genetic signatures.
Collapse
Affiliation(s)
- Jéssica Vieira de Assis
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | - Lucélia Antunes Coutinho
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
| | | | - Oyetunde Timothy Oyeyemi
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, University of Medical SciencesOndo, Ondo State, Nigeria
| | - Rafaella Fortini e Queiroz Grenfell
- Diagnosis and Therapy of Infectious Diseases and Cancer, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz)Belo Horizonte, Minas Gerais, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of GeorgiaAthens, Georgia, United States of America
| |
Collapse
|
9
|
Helal MA, Shouman S, Abdelwaly A, Elmehrath AO, Essawy M, Sayed SM, Saleh AH, El-Badri N. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. J Biomol Struct Dyn 2022; 40:1109-1119. [PMID: 32936048 PMCID: PMC7544927 DOI: 10.1080/07391102.2020.1822208] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Lymphopenia is considered one of the most characteristic clinical features of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 infects host cells via the interaction of its spike protein with the human angiotensin-converting enzyme 2 (hACE2) receptor. Since T lymphocytes display a very low expression level of hACE2, a novel receptor might be involved in the entry of SARS-CoV-2 into T cells. The transmembrane glycoprotein CD147 is highly expressed by activated T lymphocytes, and was recently proposed as a probable route for SARS-CoV-2 invasion. To understand the molecular basis of the potential interaction of SARS-CoV-2 to CD147, we have investigated the binding of the viral spike protein to this receptor in-silico. The results showed that this binding is dominated by electrostatic interactions involving residues Arg403, Asn481, and the backbone of Gly502. The overall binding arrangement shows the CD147 C-terminal domain interacting with the spike external subdomain in the grove between the short antiparallel β strands, β1' and β2', and the small helix α1'. This proposed interaction was further confirmed using MD simulation and binding free energy calculation. These data contribute to a better understanding of the mechanism of infection of SARS-CoV-2 to T lymphocytes and could provide valuable insights for the rational design of adjuvant treatment for COVID-19. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed A. Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed O. Elmehrath
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Essawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Shireen M. Sayed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Amr H. Saleh
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
10
|
Samad A, Huq MA, Rahman MS. Bioinformatics approaches identified dasatinib and bortezomib inhibit the activity of MCM7 protein as a potential treatment against human cancer. Sci Rep 2022; 12:1539. [PMID: 35087187 PMCID: PMC8795118 DOI: 10.1038/s41598-022-05621-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Minichromosome Maintenance Complex Component 7 (MCM7) is a key component of the DNA replication licensing factor and hexamer MCM (MCM2-7) complex that regulates the DNA replication process. The MCM7 protein is associated with tumor cell proliferation that plays an important role in different human cancer progression. As the protein is highly expressed during the cancer development process, therefore, inhibition of the protein can be utilized as a treatment option for different human cancer. However, the study aimed to identify potential small molecular drug candidates against the MCM7 protein that can utilize treatment options for human cancer. Initially, the compounds identified from protein-drugs network analysis have been retrieved from NetworkAnalyst v3.0 server and screened through molecular docking, MM-GBSA, DFT, pharmacokinetics, toxicity, and molecular dynamics (MD) simulation approach. Two compounds namely Dasatinib (CID_3062316) and Bortezomib (CID_387447) have been identified throughout the screening process, which have the highest negative binding affinity (Kcal/mol) and binding free energy (Kcal/mol). The pharmacokinetics and toxicity analysis identified drug-like properties and no toxicity properties of the compounds, where 500 ns MD simulation confirmed structural stability of the two compounds to the targeted proteins. Therefore, we can conclude that the compounds dasatinib and bortezomib can inhibit the activity of the MCM7 and can be developed as a treatment option against human cancer.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
11
|
Alam R, Biswas S, Haque F, Pathan MT, Imon RR, Talukder MEK, Samad A, Asseri AH, Ahammad F. A systematic analysis of ATPase Cation transporting 13A2 (ATP13A2) transcriptional expression and prognostic value in human brain cancer. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Tabassum A, Samdani MN, Dhali TC, Alam R, Ahammad F, Samad A, Karpiński TM. Transporter associated with antigen processing 1 (TAP1) expression and prognostic analysis in breast, lung, liver, and ovarian cancer. J Mol Med (Berl) 2021; 99:1293-1309. [PMID: 34047812 PMCID: PMC8367907 DOI: 10.1007/s00109-021-02088-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
Transporter associated with antigen processing 1 (TAP1) is a transporter protein that represent tumor antigen in the MHC I or HLA complex. Any defect in the TAP1 gene resulting in inadequate tumor tracking. TAP1 influences multidrug resistance (MDR) in human cancer cell lines and hinders the treatment during chemotherapeutic. The association of TAP1 in cancer progression remains mostly unknown and further study of the gene in relation with cancer need to conduct. Thus, the study has designed to analyze the association between the TAP1 with cancer by computationally. The expression pattern of the gene has determined by using ONCOMINE, GENT2, and GEPIA2 online platforms. The protein level of TAP1 was examined by the help of Human Protein Atlas. Samples with different clinical outcomes were investigated to evaluate the expression and promoter methylation in cancer vs. normal tissues by using UALCAN server. The copy number alteration, mutation frequency, and expression level of the gene in different cancer were analyzed by using cBioPortal server. The PrognoScan and KM plotter platforms were used to perform the survival analysis and represented graphically. Additionally, pathway and gene ontology (GO) features correlated to the TAP1 gene were analyzed and presented by bar charts. After arranging the data in a single panel like correlating expression to prognosis, mutational and alterations characteristic, and pathways analysis, we observed some interesting insights that emphasized the importance of the gene in cancer progression. The study found the relationship between the TAP1 expression pattern and prognosis in different cancer tissues and shows how TAP1 affects the clinical characteristics. The analytical data presented in the study is vital to learn about the effect of TAP1 in tumor tissue, where previously studies showing contradicting expression of TAP1 in cancer tissue. The analyzed data can also be utilized further to evade the threats against chemotherapy. Overall, the study provided a new aspect to consider the role of TAP1 gene in cancer progression and survival status. KEY MESSAGES: • This study demonstrated, for the first time, a correlation between the TAP1 gene and tumor progression. • An upregulation of TAP1 mRNA was demonstrated in various cancer types. • This study reported a significant negative correlation for TAP1 gene expression and the survival rate in different cancer types.
Collapse
Affiliation(s)
- Anika Tabassum
- Biochemistry Department, School of Life Sciences, Independent University, Dhaka, 1229 Bangladesh
| | | | - Tarak Chandra Dhali
- Department of Biotechnology and Genetic Engineering, Khulna University, Khulna, 9208 Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, 21589 Saudi Arabia
| | - Abdus Samad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408 Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
13
|
Shen YT, Huang X, Zhang G, Jiang B, Li CJ, Wu ZS. Pan-Cancer Prognostic Role and Targeting Potential of the Estrogen-Progesterone Axis. Front Oncol 2021; 11:636365. [PMID: 34322374 PMCID: PMC8311599 DOI: 10.3389/fonc.2021.636365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Estrogen receptors (ESRs) and progesterone receptors (PGRs) are associated with the development and progression of various tumors. The feasibility of ESRs and PGRs as prognostic markers and therapeutic targets for multiple cancers was evaluated via pan-cancer analysis. Methods The pan-cancer mRNA expression levels, genetic variations, and prognostic values of ESR1, ESR2, and PGR were analyzed using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and cBioPortal. The expression levels of ERa, ERb, and PGR proteins were detected by immunohistochemical staining using paraffin-embedded tissue specimens of ovarian serous cystadenocarcinoma (OV) and uterine endometrioid adenocarcinoma (UTEA). Correlation between immunomodulators and immune cells was determined based on the Tumor and Immune System Interaction Database (TISIDB). Results ESR1, ESR2, and PGR mRNAs were found to be differentially expressed in different cancer types, and were associated with tumor progression and clinical prognosis. ERa, ERb, and PGR proteins were further determined to be significantly differentially expressed in OV and UTEA via immunohistochemical staining. The expression of ERa protein was positively correlated with a high tumor stage, whereas the expression of PGR protein was conversely associated with a high tumor stage in patients with OV. In patients with UTEA, the expression levels of both ERa and PGR proteins were conversely associated with tumor grade and stage. In addition, the expression levels of ESR1, ESR2, and PGR mRNAs were significantly associated with the expression of immunomodulators and immune cells. Conclusion ESR1, ESR2, and PGR are potential prognostic markers and therapeutic targets, as well as important factors for the prediction, evaluation, and individualized treatment in several cancer types.
Collapse
Affiliation(s)
- Yu-Ting Shen
- Department of Pathology, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Jiang
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Cheng-Jun Li
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Zhang Y, Li S, Li F, Lv C, Yang QK. High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma. Biol Direct 2021; 16:10. [PMID: 34053456 PMCID: PMC8166005 DOI: 10.1186/s13062-021-00294-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Long-chain acyl-CoA synthetase-4 (ACSL4) is involved in fatty acid metabolism, and aberrant ACSL4 expression could be either tumorigenic or tumor-suppressive in different tumor types. However, the function and clinical significance of ACSL4 in lung adenocarcinoma remain elusive. RESULTS ACSL4 was frequently downregulated in lung adenocarcinoma when analyzing both the TCGA database and the validation samples, and the lower ACSL4 expression was correlated with a worse prognosis. Using gene set enrichment analysis, we found that high ACSL4 expression was frequently associated with the oxidative stress pathway, especially ferroptosis-related proteins. In vitro functional studies showed that knockdown of ACSL4 increased tumor survival/invasiveness and inhibited ferroptosis, while ACSL4 overexpression exhibited the opposite effects. Moreover, high-fat treatment could also inhibit erastin-induced ferroptosis by affecting ACSL4 expression. The anti-tumor effects of ferroptosis inducers and the anti-ferroptosis effects of the high-fat diet were further validated using the mouse xenograft model. CONCLUSIONS ACSL4 plays a tumor-suppressive role in lung adenocarcinoma by suppressing tumor survival/invasiveness and promoting ferroptosis. Our study provided a theoretical reference for the application of ferroptotic inducers and dietary guidance for lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Yixiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medicine University, No. 222 Zhongshan Road, Liaoning, 116000, Dalian, China
| | - Songyu Li
- Department of Oncology, Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Lvshun South Road, Liaoning, 116044, Dalian, China
| | - Fengzhou Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medicine University, No. 222 Zhongshan Road, Liaoning, 116000, Dalian, China
| | - Changsheng Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medicine University, No. 222 Zhongshan Road, Liaoning, 116000, Dalian, China.
| | - Qing-Kai Yang
- Department of Oncology, Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Lvshun South Road, Liaoning, 116044, Dalian, China.
| |
Collapse
|
15
|
Familial Occurrence of Adult Granulosa Cell Tumors: Analysis of Whole-Genome Germline Variants. Cancers (Basel) 2021; 13:cancers13102430. [PMID: 34069790 PMCID: PMC8157239 DOI: 10.3390/cancers13102430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Although granulosa cell tumors can occur in rare syndromes and one familial case of a granulosa cell tumor has been described, a genetic predisposition for granulosa cell tumors has not been identified. Through our collaborations with patients, we identified four families in which two women of each family were diagnosed with an adult granulosa cell tumor. Although predicted deleterious variants in PIK3C2G, BMP5, and LRP2 were found, we could not identify an overlapping genetic variant or affected locus that may explain a genetic predisposition for granulosa cell tumors. The age of onset in the familial patients was significantly lower (median 38 years, range from 17 to 60) than in sporadic patients (median between 50 and 55 years). Furthermore, breast cancer, polycystic ovary syndrome, and subfertility were seen in these families. Abstract Adult granulosa cell tumor (AGCT) is a rare ovarian cancer subtype, with a peak incidence around 50–55 years. Although AGCT can occur in specific syndromes, a genetic predisposition for AGCT has not been identified. The aim of this study is to identify a genetic variant in families with AGCT patients, potentially contributing to tumor evolution. We identified four families, each including two women diagnosed with AGCT. Whole-genome sequencing was performed to identify overlapping germline variants or affected genes. Familial relationship was evaluated using genealogy and genomic analyses. Patient characteristics, medical (family) history, and pedigrees were collected. Findings were compared to a reference group of 33 unrelated AGCT patients. Mean age at diagnosis was 38 years (range from 17 to 60) versus 51 years in the reference group, and seven of eight patients were premenopausal. In two families, three first degree relatives were diagnosed with breast cancer. Furthermore, polycystic ovary syndrome (PCOS) and subfertility was reported in three families. Predicted deleterious variants in PIK3C2G, BMP5, and LRP2 were identified. In conclusion, AGCTs occur in families and could potentially be hereditary. In these families, the age of AGCT diagnosis is lower and cases of breast cancer, PCOS, and subfertility are present. We could not identify an overlapping genetic variant or affected locus that may explain a genetic predisposition for AGCT.
Collapse
|
16
|
Mou MA, Keya NA, Islam M, Hossain MJ, Al Habib MS, Alam R, Rana S, Samad A, Ahammad F. Validation of CSN1S1 transcriptional expression, promoter methylation, and prognostic power in breast cancer using independent datasets. Biochem Biophys Rep 2020; 24:100867. [PMID: 33381666 PMCID: PMC7767798 DOI: 10.1016/j.bbrep.2020.100867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Breast cancer ranked second among most frequent cancer in the world playing a significant role in mortality rate. Having prior knowledge on differentially expressed genes in breast cell carcinoma elucidated important indications to understand the molecular mechanism underneath breast carcinogenesis. In this study we have investigated the distinguished CSN1S1 expression in human breast cancer. We have analyzed CSN1S1 mRNA expression between cancer and normal tissues using TCGA datasets. Moreover, analysis including promoter methylation, mutations, prognosis, co-expression, gene ontology, and pathways of CSN1S1 were performed by the TCGA Wanderer, UCSC Xena, cBioPortal, PrognoScan, UALCAN, and Enricher server. We have observed low mRNA expression and high promoter methylation of CSN1S1 in cancer tissues compared to normal tissues. Furthermore, we have also identified low mRNA expression in clinicopathological patients, as well as 9 deleterious mutations with highly co-expressed protein MRC1, and significantly related signaling pathways. We have found a positive correlation between the lower expression of CSN1S1 and patients surviving with breast cancer. Here we have concluded that CSN1S1 acts as a biomarker for the surveillance and prognosis of breast cancer, and also works as a novel therapeutic target at the molecular and pathway levels. Low transcriptional expression and low survival rate of CSN1S1 in breast cancer. The investigation of clinical profiles and mutational positions of CSN1S1 in breast cancer. The investigation of gene ontology and signaling pathway of CSN1S1 and their co-expressed genes. We identified CSN1S1 and also their co-expressed proteins are the potential biomarkers in breast cancer.
Collapse
Affiliation(s)
- Mohsina Akter Mou
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Bangladesh
| | - Nawshin Atia Keya
- Department of Microbiology, Noakhali Science and Technology University, Bangladesh
| | - Majharul Islam
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | | | - Md Syeed Al Habib
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Rahat Alam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboraty of Computational Biology, Biological Solution Cantre (BiolSol Centre), Dhaka, Bangladesh
| | - Sohel Rana
- Department of Pharmacy, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboraty of Computational Biology, Biological Solution Cantre (BiolSol Centre), Dhaka, Bangladesh
| | - Foysal Ahammad
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboraty of Computational Biology, Biological Solution Cantre (BiolSol Centre), Dhaka, Bangladesh.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, 21589, Saudi Arabia
| |
Collapse
|
17
|
High expression of bone morphogenetic protein 1 (BMP1) is associated with a poor survival rate in human gastric cancer, a dataset approaches. Genomics 2020; 113:1141-1154. [PMID: 33189777 DOI: 10.1016/j.ygeno.2020.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Bone morphogenetic protein 1 (BMP1) is a secreted metalloprotease of the astacin M12A family of bone morphogenetic proteins (BMPs). BMP1 activates transforming growth factor-β (TGF-β) and BMP signaling pathways by proteolytic cleavage, which has dual roles in gastrointestinal tumor development and progression.TGF-β promotes invasion and metastasis of gastric cancer (GC) by the help of BMP1, so upregulation of the BMP1 may increase cancer invasiveness in GC. In this study,the transcriptional expression, mutations, survival rate, TFs, miRNAs, gene ontology, and signaling pathways of BMP1 were analyzed by using different web servers. We found higher transcriptional and clinicopathological characteristics expression compared to normal tissues, worsening survival rate in GC. We detected 25 missenses, 15 truncating mutations, 23 TFs, and 8 miRNAs. Finally, we identified and analyzed the co-expressed genes and found that the leukemia inhibitory factor is the most positively correlated gene. The gene ontological features and signaling pathways involved in GC development were evaluated as well. We believe that this study will provide a basis for BMP1 to be a significant biomarker for human GC prognosis.
Collapse
|
18
|
Samad A, Jafar T, Rafi JH. Identification of angiotensin-converting enzyme 2 (ACE2) protein as the potential biomarker in SARS-CoV-2 infection-related lung cancer using computational analyses. Genomics 2020; 112:4912-4923. [PMID: 32916258 PMCID: PMC7831469 DOI: 10.1016/j.ygeno.2020.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
COVID-19 is a pandemic that began to spread worldwide caused by SARS-CoV-2. Lung cancer patients are more susceptible to SARS-CoV-2 infection. The SARS-CoV-2 enters into the host by the ACE2 receptor. Thus, ACE2 is the key to understand the mechanism of SARS-CoV-2 infection. However, the lack of knowledge about the biomarker of COVID-19 warrants the development of ACE2 biomarkers. The analysis of ACE2 expression in lung cancer was performed using The Cancer Genome Atlas (TCGA). Therefore, we investigated the prognosis, clinical characteristics, and mutational analysis of lung cancer. We also analyzed the shared proteins between the COVID-19 and lung cancer, protein-protein interactions, gene-miRNAs, gene-transcription factors (TFs), and the signaling pathway. Finally, we compared the mRNA expression of ACE2 and its co-expressed proteins using the TCGA. The up-regulation of ACE2 in lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC) was found irrespective of gender and age. We found the low survival rate in high expression of ACE2 in lung cancer patients and 16 mutational positions. The functional assessment of targeted 12,671, 3107, and 29 positive genes were found in COVID-19 disease, LUAD, and LUSC, respectively. Then, we identified eight common genes that interact with 20 genes, 219 miRNAs, and 16 TFs. The common genes performed the mRNA expression in lung cancer, which proved the ACE2 is the best potential biomarker compared to co-expressed genes. This study uncovers the relationship between COVID-19 disease and lung cancer. We identified ACE2 and also its co-expressed proteins are the potential biomarker and therapy as the current COVID-19 disease and lung cancer.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Tamanna Jafar
- Department of Microbiology, Faculty of Biological Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Jahirul Hasnat Rafi
- Department of Microbiology, Faculty of Biological Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
19
|
Samad A, Haque F, Nain Z, Alam R, Al Noman MA, Rahman Molla MH, Hossen MS, Islam MR, Khan MI, Ahammad F. Computational assessment of MCM2 transcriptional expression and identification of the prognostic biomarker for human breast cancer. Heliyon 2020; 6:e05087. [PMID: 33024849 PMCID: PMC7530310 DOI: 10.1016/j.heliyon.2020.e05087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/09/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance protein 2 (MCM2) is a highly conserved protein from the MCM protein family that plays an important role in eukaryotic DNA replication as well as in cell cycle progression. In addition, it maintains the ploidy level consistency in eukaryotic cells, hence, mutations or alteration of this protein could result in the disintegration of the fine-tuned molecular machinery that can lead to uncontrolled cell proliferation. Moreover, MCM2 has been found to be an important marker for progression and prognosis in different cancers. Therefore, we aimed to analyze the MCM2 expression and the associated outcome in breast cancer (BC) patients based on the publicly available online databases. In this study, server-based gene expression analyses indicate the upregulation of MCM2 (p < 10-6; fold change>2.0) in various BC subtypes as compared to the respective normal tissues. Besides, the evaluation of histological sections from healthy and cancer tissues showed strong staining signals indicating higher expression of MCM2 protein. The overexpression of MCM2 was significantly correlated to promoter methylation and was related to patients' clinical features. Further, mutation analysis suggested missense as the predominant type of mutation (71.4%) with 18 copy-number alterations and 0.2% mutation frequency in the MCM2 gene. This study revealed a significant correlation (Cox p ≤ 0.05) between the higher MCM2 expression and lower patient survival. Finally, we identified the co-expressed genes with gene ontological features and signaling pathways associated in BC development. We believe that this study will provide a basis for MCM2 to be a significant biomarker for human BC prognosis.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Farhana Haque
- Department of Biotechnology and Genetic Engineering, Khulna University, Khulna, 9208, Bangladesh
| | - Zulkar Nain
- Department of Genetic Engineering and Biotechnology, Faculty of Sciences and Engineering, East West University, Dhaka, 1212, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Rahat Alam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Molecular and Cellular Biology Laboratory, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Abdullah Al Noman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Molecular and Cellular Biology Laboratory, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohammad Habibur Rahman Molla
- Institute of Marine Sciences and Fisheries, University of Chittagong, Chittagong, 4331, Bangladesh.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Saddam Hossen
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Raquibul Islam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Iqbal Khan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Department of Biotechnology and Genetic Engineering, Khulna University, Khulna, 9208, Bangladesh
| | - Foysal Ahammad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Molecular and Cellular Biology Laboratory, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
20
|
Leung KL, Verma D, Azam YJ, Bakker E. The use of multi-omics data and approaches in breast cancer immunotherapy: a review. Future Oncol 2020; 16:2101-2119. [PMID: 32857605 DOI: 10.2217/fon-2020-0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is projected to be the most common cancer in women in 2020 in the USA. Despite high remission rates treatment side effects remain an issue, hence the interest in novel approaches such as immunotherapies which aim to utilize patients' immune systems to target cancer cells. This review summarizes the basics of breast cancer including staging and treatment options, followed by a discussion on immunotherapy, including immune checkpoint blockade. After this, examples of the role of omics-type data and computational biology/bioinformatics in breast cancer are explored. Ultimately, there are several promising areas to investigate such as the prediction of neoantigens and the use of multi-omics data to direct research, with noted appropriate in clinical trial design in terms of end points.
Collapse
Affiliation(s)
- Ka Lun Leung
- School of Medicine, The University of Central Lancashire, Preston, UK
| | - Devika Verma
- School of Medicine, The University of Central Lancashire, Preston, UK
| | | | - Emyr Bakker
- School of Medicine, The University of Central Lancashire, Preston, UK
| |
Collapse
|
21
|
A multi-omics approach to reveal the key evidence of GDF10 as a novel therapeutic biomarker for breast cancer. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|