1
|
Eltanameli B, Piñeiro-Llanes J, Cristofoletti R. Recent advances in cell-based in vitro models for predicting drug permeability across brain, intestinal, and pulmonary barriers. Expert Opin Drug Metab Toxicol 2024; 20:439-458. [PMID: 38850058 DOI: 10.1080/17425255.2024.2366390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Recent years have witnessed remarkable progress in the development of cell-based in vitro models aimed at predicting drug permeability, particularly focusing on replicating the barrier properties of the blood-brain barrier (BBB), intestinal epithelium, and lung epithelium. AREA COVERED This review provides an overview of 2D in vitro platforms, including monocultures and co-culture systems, highlighting their respective advantages and limitations. Additionally, it discusses tools and techniques utilized to overcome these limitations, paving the way for more accurate predictions of drug permeability. Furthermore, this review delves into emerging technologies, particularly microphysiological systems (MPS), encompassing static platforms such as organoids and dynamic platforms like microfluidic devices. Literature searches were performed using PubMed and Google Scholar. We focus on key terms such as in vitro permeability models, MPS, organoids, intestine, BBB, and lungs. EXPERT OPINION The potential of these MPS to mimic physiological conditions more closely offers promising avenues for drug permeability assessment. However, transitioning these advanced models from bench to industry requires rigorous validation against regulatory standards. Thus, there is a pressing need to validate MPS to industry and regulatory agency standards to exploit their potential in drug permeability prediction fully. This review underscores the importance of such validation processes to facilitate the translation of these innovative technologies into routine pharmaceutical practice.
Collapse
Affiliation(s)
- Bassma Eltanameli
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Janny Piñeiro-Llanes
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| |
Collapse
|
2
|
Chan LC, Mat Yassim AS, Ahmad Fuaad AAH, Leow TC, Sabri S, Radin Yahaya RS, Abu Bakar AMS. Inhibition of SARS-CoV-2 3CL protease by the anti-viral chimeric protein RetroMAD1. Sci Rep 2023; 13:20178. [PMID: 37978223 PMCID: PMC10656507 DOI: 10.1038/s41598-023-47511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
COVID-19 results from SARS-CoV-2, which mutates frequently, challenging current treatments. Therefore, it is critical to develop new therapeutic drugs against this disease. This study explores the interaction between SARS-CoV-2 3CLpro and RetroMAD1, a well-characterized coronavirus protein and potential drug target, using in-silico methods. The analysis through the HDOCK server showed stable complex formation with a binding energy of -12.3, the lowest among reference drugs. The RetroMAD1-3CLpro complex underwent a 100 ns molecular dynamics simulation (MDS) in an explicit solvation system, generating various trajectories, including RMSD, RMSF, hydrogen bonding, radius of gyration, and ligand binding energy. MDS results confirmed intact interactions within the RetroMAD1-3CLpro complex during simulations. In vitro experiments validated RetroMAD1's ability to inhibit 3CLpro enzyme activity and prevent SARS-CoV-2 infection in human bronchial cells. RetroMAD1 exhibited antiviral efficacy comparable to Remdesivir without cytotoxicity at effective concentrations. These results suggest RetroMAD1 as a potential drug candidate against SARS-CoV-2, warranting further in vivo and clinical studies to assess its efficiency.
Collapse
Affiliation(s)
- Lee-Chin Chan
- Biovalence Sdn. Bhd., 22, Jalan SS 25/34, Taman Mayang, 47301, Petaling Jaya, Selangor, Malaysia
- Biovalence Technologies Pte. Ltd., #06-307 The Plaza, 7500A Beach Road, Singapore, 199591, Singapore
| | - Aini Syahida Mat Yassim
- Biovalence Sdn. Bhd., 22, Jalan SS 25/34, Taman Mayang, 47301, Petaling Jaya, Selangor, Malaysia.
- Biovalence Technologies Pte. Ltd., #06-307 The Plaza, 7500A Beach Road, Singapore, 199591, Singapore.
- School of Health Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Abdullah Al Hadi Ahmad Fuaad
- Centre of Fundamental and Frontier Sciences in Self-Assembly (FSSA), Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Thean Chor Leow
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Radin Shafierul Radin Yahaya
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Awang Muhammad Sagaf Abu Bakar
- Jabatan Perkhidmatan Veterinar Sabah, Aras 3, Blok B, Wisma Pertanian Sabah, Jalan Tasik, Luyang (Off Jln Maktab Gaya), Beg Berkunci 2051, 88999, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
3
|
Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, Dantonio A, Di L, Eng H, Ferre R, Gajiwala KS, Gibson SA, Greasley SE, Hurst BL, Kadar EP, Kalgutkar AS, Lee JC, Lee J, Liu W, Mason SW, Noell S, Novak JJ, Obach RS, Ogilvie K, Patel NC, Pettersson M, Rai DK, Reese MR, Sammons MF, Sathish JG, Singh RSP, Steppan CM, Stewart AE, Tuttle JB, Updyke L, Verhoest PR, Wei L, Yang Q, Zhu Y. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science 2021; 374:1586-1593. [PMID: 34726479 DOI: 10.1126/science.abl4784] [Citation(s) in RCA: 1219] [Impact Index Per Article: 304.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Dafydd R Owen
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | | | | | | | - Melissa Avery
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Simon Berritt
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Britton Boras
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Rhonda D Cardin
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Anthony Carlo
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Karen J Coffman
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Alyssa Dantonio
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Li Di
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Heather Eng
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - RoseAnn Ferre
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Ketan S Gajiwala
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Scott A Gibson
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University; Logan, UT 84322, USA
| | | | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University; Logan, UT 84322, USA
| | - Eugene P Kadar
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Amit S Kalgutkar
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Jack C Lee
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Jisun Lee
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Wei Liu
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Stephen W Mason
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Stephen Noell
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Jonathan J Novak
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - R Scott Obach
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Kevin Ogilvie
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Nandini C Patel
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Martin Pettersson
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Devendra K Rai
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | - Matthew R Reese
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Matthew F Sammons
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Jean G Sathish
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| | | | - Claire M Steppan
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Al E Stewart
- Pfizer Worldwide Research, Development & Medical, La Jolla, CA 92121, USA
| | - Jamison B Tuttle
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Lawrence Updyke
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Patrick R Verhoest
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Liuqing Wei
- Pfizer Worldwide Research, Development & Medical; Groton, CT 06340, USA
| | - Qingyi Yang
- Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA
| | - Yuao Zhu
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY 10965, USA
| |
Collapse
|
4
|
Barilli A, Visigalli R, Ferrari F, Di Lascia M, Riccardi B, Puccini P, Dall'Asta V, Rotoli BM. Organic cation transporters (OCTs/OCTNs) in human primary alveolar epithelial cells. Biochem Biophys Res Commun 2021; 576:27-32. [PMID: 34478916 DOI: 10.1016/j.bbrc.2021.08.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Alveolar epithelium, besides exerting a key role in gas exchange and surfactant production, plays important functions in host defense and inflammation. Pathological conditions associated to alveolar dysfunction include Acute Respiratory Distress Syndrome (ARDS), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). The use of predictive in vitro models of human alveolar epithelium is nowadays required for the study of disease mechanisms, as well as of pharmacokinetic parameters of pulmonary drugs delivery. Here, we employed a novel 3D model of human alveoli, namely EpiAlveolar™, consisting of primary alveolar epithelial cells, pulmonary endothelial cells and fibroblasts, that reflects properly the in vivo-like conditions. In EpiAlveolar™ we performed a characterization of Organic Cation Transporters (OCTs and OCTNs) expression and activity and we found that OCTN2, OCT1 and OCT3 are expressed on the basolateral membrane; instead, ATB0,+ transporter for cationic and neutral amino acids, which shares with OCTN2 the affinity for carnitine as substrate, is readily detectable and functional at the apical side. We also show that these transporters differentially interact with anticholinergic drugs. Overall, our findings reveal close similarities of EpiAlveolar™ with the tracheal/bronchial epithelium (EpiAirway™ model) and entrust this alveolar tissue as a potential tool for the screening of biopharmaceuticals molecules.
Collapse
Affiliation(s)
- Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Maria Di Lascia
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Benedetta Riccardi
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Paola Puccini
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Valeria Dall'Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| | - Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| |
Collapse
|
5
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
6
|
Barilli A, Visigalli R, Ferrari F, Borsani G, Dall'Asta V, Rotoli BM. Flagellin From Pseudomonas Aeruginosa Stimulates ATB 0,+ Transporter for Arginine and Neutral Amino Acids in Human Airway Epithelial Cells. Front Immunol 2021; 12:641563. [PMID: 33841424 PMCID: PMC8029981 DOI: 10.3389/fimmu.2021.641563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/08/2021] [Indexed: 01/08/2023] Open
Abstract
At present, the central role played by arginine in the modulation of the inflammatory cellular responses is well-recognized, and many pro-inflammatory stimuli are known to modulate the expression and activity of its transmembrane transporters. In this regard, we have addressed the effects of bacterial flagellin from Pseudomonas aeruginosa (FLA-PA) on the uptake of the amino acid in human epithelial respiratory cells. Among the arginine transporters, only ATB0,+, y+L, and y+ were operative in bronchial epithelial Calu-3 cells under control conditions; however, only the expression and activity of ATB0,+ were stimulated upon incubation with flagellin, whereas those of systems y+L and y+ were not stimulated. As a result, this induction, in turn, led to an increase in the intracellular content of arginine without making any change to its metabolic pathway. In addition, flagellin upregulated the amount of other amino acids substrates of ATB0,+, in particular, all the essential amino acids, such as valine, isoleucine, and leucine, along with the non-essential glutamine. At the molecular level, these effects were directly referable to the stimulation of a toll-like receptor-5 (TLR5) signaling pathway and to the induction of nuclear factor-κB (NF-κB) transcription factor. An induction of ATB0,+ expression has been observed also in EpiAirway™, a model of primary human normal tracheal-bronchial epithelial cells that mimics the in vitro pseudostratified columnar epithelium of the airways. In this tissue model, the incubation with flagellin is associated with the upregulation of messenger RNAs (mRNAs) for the chemokine IL-8 and for the cytokines IL-6 and interleukin-1β (IL-1β); as for the latter, a marked secretion in the extracellular medium was also observed due to the concomitant activation of caspase-1. The overall findings indicate that, in human respiratory epithelium, flagellin promotes cellular responses associating the increase of intracellular amino acids through ATB0,+ with the activation of the inflammasome. Given the role of the ATB0,+ transporter as a delivery system for bronchodilators in human airway epithelial cells, its induction under inflammatory conditions gains particular relevance in the field of respiratory pharmacology.
Collapse
Affiliation(s)
- Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Borsani
- Section of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Dall'Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Organic Cation Transporters in the Lung-Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int J Mol Sci 2020; 21:ijms21239168. [PMID: 33271927 PMCID: PMC7730617 DOI: 10.3390/ijms21239168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Organic cation transporters (OCT) 1, 2 and 3 and novel organic cation transporters (OCTN) 1 and 2 of the solute carrier 22 (SLC22) family are involved in the cellular transport of endogenous compounds such as neurotransmitters, l-carnitine and ergothioneine. OCT/Ns have also been implicated in the transport of xenobiotics across various biological barriers, for example biguanides and histamine receptor antagonists. In addition, several drugs used in the treatment of respiratory disorders are cations at physiological pH and potential substrates of OCT/Ns. OCT/Ns may also be associated with the development of chronic lung diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD) and, thus, are possible new drug targets. As part of the Special Issue "Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations", this review provides an overview of recent findings on the (patho)physiological and pharmacological functions of organic cation transporters in the lung.
Collapse
|