1
|
Gu S, Huang X, Luo S, Liu Y, Khoong Y, Liang H, Tu L, Xu R, Yang E, Zhao Y, Yao M, Zan T. Targeting the nuclear long noncoding transcript LSP1P5 abrogates extracellular matrix deposition by trans-upregulating CEBPA in keloids. Mol Ther 2024; 32:1984-1999. [PMID: 38553852 PMCID: PMC11184311 DOI: 10.1016/j.ymthe.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 06/09/2024] Open
Abstract
Keloids are characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix (ECM) and are a major global health care burden among cutaneous diseases. However, the function of long noncoding RNA (lncRNA)-mediated ECM remodeling during the pathogenesis of keloids is still unclear. Herein, we identified a long noncoding transcript, namely, lymphocyte-specific protein 1 pseudogene 5 (LSP1P5), that modulates ECM component deposition in keloids. First, high-throughput transcriptome analysis showed that LSP1P5 was selectively upregulated in keloids and correlated with more severe disease in a clinical keloid cohort. Therapeutically, the attenuation of LSP1P5 significantly decreased the expression of ECM markers (COL1, COL3, and FN1) both in vitro and in vivo. Intriguingly, an antifibrotic gene, CCAAT enhancer binding protein alpha (CEBPA), is a functional downstream candidate of LSP1P5. Mechanistically, LSP1P5 represses CEBPA expression by hijacking Suppressor of Zeste 12 to the promoter of CEBPA, thereby enhancing the polycomb repressive complex 2-mediated H3K27me3 and changing the chromosomal opening status of CEBPA. Taken together, these findings indicate that targeting LSP1P5 abrogates fibrosis in keloids through epigenetic regulation of CEBPA, revealing a novel antifibrotic therapeutic strategy that bridges our current understanding of lncRNA regulation, histone modification and ECM remodeling in keloids.
Collapse
Affiliation(s)
- Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Shenying Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Liying Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Ruoqing Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - En Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| |
Collapse
|
2
|
Mason W, Levin AM, Buhl K, Ouchi T, Parker B, Tan J, Ashammakhi N, Jones LR. Translational Research Techniques for the Facial Plastic Surgeon: An Overview. Facial Plast Surg 2023; 39:466-473. [PMID: 37339663 DOI: 10.1055/a-2113-5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The field of facial plastic and reconstructive surgery (FPRS) is an incredibly diverse, multispecialty field that seeks innovative and novel solutions for the management of physical defects on the head and neck. To aid in the advancement of medical and surgical treatments for these defects, there has been a recent emphasis on the importance of translational research. With recent technological advancements, there are now a myriad of research techniques that are widely accessible for physician and scientist use in translational research. Such techniques include integrated multiomics, advanced cell culture and microfluidic tissue models, established animal models, and emerging computer models generated using bioinformatics. This study discusses these various research techniques and how they have and can be used for research in the context of various important diseases within the field of FPRS.
Collapse
Affiliation(s)
- William Mason
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Albert M Levin
- Department of Public Health Science, Henry Ford Health, Detroit, Michigan
- Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
| | - Katherine Buhl
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Takahiro Ouchi
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Bianca Parker
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Jessica Tan
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, Michigan
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan
- College of Human Medicine, Michigan State University, Michigan
| | - Lamont R Jones
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
3
|
Fernández-Guarino M, Hernández-Bule ML, Bacci S. Cellular and Molecular Processes in Wound Healing. Biomedicines 2023; 11:2526. [PMID: 37760967 PMCID: PMC10525842 DOI: 10.3390/biomedicines11092526] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This review summarizes the recent knowledge of the cellular and molecular processes that occur during wound healing. However, these biological mechanisms have yet to be defined in detail; this is demonstrated by the fact that alterations of events to pathological states, such as keloids, consisting of the excessive formation of scars, have consequences yet to be defined in detail. Attention is also dedicated to new therapies proposed for these kinds of pathologies. Awareness of these scientific problems is important for experts of various disciplines who are confronted with these kinds of presentations daily.
Collapse
Affiliation(s)
- Montserrat Fernández-Guarino
- Dermatology Service, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), 28034 Madrid, Spain;
| | - Maria Luisa Hernández-Bule
- Bioelectromagnetic Lab, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), 28034 Madrid, Spain;
| | - Stefano Bacci
- Research Unit of Histology and Embriology, Department of Biology, University of Florence, Viale Pieraccini 6, 50134 Firenze, Italy
| |
Collapse
|
4
|
Zhang M, Chen H, Qian H, Wang C. Characterization of the skin keloid microenvironment. Cell Commun Signal 2023; 21:207. [PMID: 37587491 PMCID: PMC10428592 DOI: 10.1186/s12964-023-01214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
Keloids are a fibroproliferative skin disorder that develops in people of all ages. Keloids exhibit some cancer-like behaviors, with similar genetic and epigenetic modifications in the keloid microenvironment. The keloid microenvironment is composed of keratinocytes, fibroblasts, myofibroblasts, vascular endothelial cells, immune cells, stem cells and collagen fibers. Recent advances in the study of keloids have led to novel insights into cellular communication among components of the keloid microenvironment as well as potential therapeutic targets for treating keloids. In this review, we summarized the nature of genetic and epigenetic regulation in keloid-derived fibroblasts, epithelial-to-mesenchymal transition of keratinocytes, immune cell infiltration into keloids, the differentiation of keloid-derived stem cells, endothelial-to-mesenchymal transition of vascular endothelial cells, extracellular matrix synthesis and remodeling, and uncontrolled angiogenesis in keloids with the aim of identifying new targets for therapeutic benefit. Video Abstract.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hailong Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Huan Qian
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Chen Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Wang Y, Wang G, Liu H. Tenascin-C: A Key Regulator in Angiogenesis during Wound Healing. Biomolecules 2022; 12:1689. [PMID: 36421704 PMCID: PMC9687801 DOI: 10.3390/biom12111689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Injury repair is a complex physiological process in which multiple cells and molecules are involved. Tenascin-C (TNC), an extracellular matrix (ECM) glycoprotein, is essential for angiogenesis during wound healing. This study aims to provide a comprehensive review of the dynamic changes and functions of TNC throughout tissue regeneration and to present an up-to-date synthesis of the body of knowledge pointing to multiple mechanisms of TNC at different restoration stages. (2) Methods: A review of the PubMed database was performed to include all studies describing the pathological processes of damage restoration and the role, structure, expression, and function of TNC in post-injury treatment; (3) Results: In this review, we first introduced the construction and expression signature of TNC. Then, the role of TNC during the process of damage restoration was introduced. We highlight the temporal heterogeneity of TNC levels at different restoration stages. Furthermore, we are surprised to find that post-injury angiogenesis is dynamically consistent with changes in TNC. Finally, we discuss the strategies for TNC in post-injury treatment. (4) Conclusions: The dynamic expression of TNC has a significant impact on angiogenesis and healing wounds and counters many negative aspects of poorly healing wounds, such as excessive inflammation, ischemia, scarring, and wound infection.
Collapse
Affiliation(s)
- Yucai Wang
- Department of Orthopaedic Surgery, Tangdu Hospital, AirForce Medical University, Xi’an 710000, China
| | - Guangfu Wang
- Vasculocardiology Department, The Fourth People’s Hospital of Jinan, Jinan 250000, China
| | - Hao Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
6
|
Abstract
Significance: Keloid scarring is cosmetically disfiguring, psychosocially distressing, and can be physically disabling. The pathophysiology of keloid formation is poorly understood and subsequently, treatment options are ill defined, limited, and largely unsatisfactory. Therefore, in view of its unsatisfactory and recalcitrant management, keloid therapy is often seen as a financial burden affecting both patients and the health care systems. Recent Advances: Increased research on the genetic and epigenetic mechanisms in keloids has broadened our understanding of keloid pathobiology. Epigenetic mechanisms, mainly DNA methylation, histone modification, and noncoding RNAs, are currently being widely investigated. Advances in genetic sequencing technology and reduced cost have aided this endeavor. Studies on blood and patient-derived keloid tissue are being done with therapeutic agents targeting epigenetic and genetic markers with the shared goal of identifying the pathways underlying the initiation and maintenance of keloids. These advances have informed us of multiple complex molecular pathways implicated in keloids, which are yet to be fully elucidated. Critical Issues: Improved understanding of the genetic and epigenetic causes implicated in keloids will enhance our knowledge of this enigmatic disorder and likely lead to the development of therapeutic targets based on the available clinical and experimental studies. Due to the incomplete knowledge of molecular targets involved in keloid scarring pathways, therapeutics is still lagging for this clinically and scientifically important condition. Future Directions: Focused research on the identification of molecular targets and mechanistic pathways implicated in keloids is required to generate novel antifibrotic therapeutic options to decrease or eradicate recurrence of the disease as well as associated morbidity and improve the quality of life of those affected with keloids.
Collapse
Affiliation(s)
- Dennias Tonderai Nyika
- MRC Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P. Khumalo
- MRC Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ardeshir Bayat
- MRC Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Plastic and Reconstructive Surgery Research, Wound Healing Unit, NIHR Manchester Biomedical Research, Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Bacci S. Cellular Mechanisms and Therapies in Wound Healing: Looking toward the Future. Biomedicines 2021; 9:biomedicines9111611. [PMID: 34829840 PMCID: PMC8615875 DOI: 10.3390/biomedicines9111611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Stefano Bacci
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
8
|
Meevassana J, Serirodom S, Prabsattru P, Boonsongserm P, Kamolratanakul S, Siritientong T, Mutirangura A, Angspatt A. Alu repetitive sequence CpG methylation changes in burn scars. Burns 2021; 48:1417-1424. [PMID: 34657766 DOI: 10.1016/j.burns.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Alu elements are retrotransposons related to epigenetic modifications. To date, the role of epigenetics in hypertrophic scars from burn remains unknown. Here, our aim was to examine the pathophysiology of hypertrophic scars from an epigenetic perspective. For that, we performed a cross-sectional analytical study using tissue and blood samples from burned and healthy patients (n = 23 each) to detect Alu methylation levels and patterns. The results of the combined bisulfite restriction analysis technique were categorized into four groups based on the methylation status at the CpG dinucleotides from the 5' to the 3' ends of the Alu sequence: hypermethylated (mCmC), hypomethylated (uCuC), and partially methylated (uCmC and mCuC). Alu methylation levels were significantly lower in hypertrophic scar tissues than in normal skin (29.37 ± 2.49% vs. 35.56 ± 3.18%, p = 0.0002). In contrast, the levels were significantly higher in white blood cells from blood samples of burned patients than in those of control blood samples (26.92 ± 4.04% vs. 24.58 ± 3.34%, p = 0.0278). Alu total methylation (mC) and the uCmC pattern were significantly lower, whereas uCuC was significantly higher, in hypertrophic scar tissues than in normal skin (p < 0.0001). Receiver operating characteristic analysis indicated that the uCmC and uCuC patterns are useful as hypertrophic scar DNA methylation markers after burn, with 91.30% sensitivity and 96.23% specificity and 100% sensitivity and 94.23% specificity, respectively. Our findings suggest that epigenetic modifications play a major role in hypertrophic scar pathogenesis, and may be the starting point for developing a novel technique for burn scar treatment.
Collapse
Affiliation(s)
- Jiraroch Meevassana
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand.
| | - Siwat Serirodom
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Prabsattru
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand
| | - Papatson Boonsongserm
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tippawan Siritientong
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apichai Angspatt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Stevenson AW, Deng Z, Allahham A, Prêle CM, Wood FM, Fear MW. The epigenetics of keloids. Exp Dermatol 2021; 30:1099-1114. [PMID: 34152651 DOI: 10.1111/exd.14414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Keloid scarring is a fibroproliferative disorder of the skin with unknown pathophysiology, characterised by fibrotic tissue that extends beyond the boundaries of the original wound. Therapeutic options are few and commonly ineffective, with keloids very commonly recurring even after surgery and adjunct treatments. Epigenetics, defined as alterations to the DNA not involving the base-pair sequence, is a key regulator of cell functions, and aberrant epigenetic modifications have been found to contribute to many pathologies. Multiple studies have examined many different epigenetic modifications in keloids, including DNA methylation, histone modification, microRNAs and long non-coding RNAs. These studies have established that epigenetic dysregulation exists in keloid scars, and successful future treatment of keloids may involve reverting these aberrant modifications back to those found in normal skin. Here we summarise the clinical and experimental studies available on the epigenetics of keloids, discuss the major open questions and future perspectives on the treatment of this disease.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Cecilia M Prêle
- Ear Science Centre, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Institute for Respiratory Health, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 2020; 12:183. [PMID: 33243301 PMCID: PMC7690154 DOI: 10.1186/s13148-020-00981-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Keloid, a common dermal fibroproliferative disorder, is benign skin tumors characterized by the aggressive fibroblasts proliferation and excessive accumulation of extracellular matrix. However, common therapeutic approaches of keloid have limited effectiveness, emphasizing the momentousness of developing innovative mechanisms and therapeutic strategies. Epigenetics, representing the potential link of complex interactions between genetics and external risk factors, is currently under intense scrutiny. Accumulating evidence has demonstrated that multiple diverse and reversible epigenetic modifications, represented by DNA methylation, histone modification, and non-coding RNAs (ncRNAs), play a critical role in gene regulation and downstream fibroblastic function in keloid. Importantly, abnormal epigenetic modification manipulates multiple behaviors of keloid-derived fibroblasts, which served as the main cellular components in keloid skin tissue, including proliferation, migration, apoptosis, and differentiation. Here, we have reviewed and summarized the present available clinical and experimental studies to deeply investigate the expression profiles and clarify the mechanisms of epigenetic modification in the progression of keloid, mainly including DNA methylation, histone modification, and ncRNAs (miRNA, lncRNA, and circRNA). Besides, we also provide the challenges and future perspectives associated with epigenetics modification in keloid. Deciphering the complicated epigenetic modification in keloid is hopeful to bring novel insights into the pathogenesis etiology and diagnostic/therapeutic targets in keloid, laying a foundation for optimal keloid ending.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yuping Ren
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Kai Hou
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Weijie Hu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yi Yi
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Mingchen Xiong
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Min Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Yiping Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| |
Collapse
|