1
|
Capece U, Gugliandolo S, Morciano C, Avolio A, Splendore A, Di Giuseppe G, Ciccarelli G, Soldovieri L, Brunetti M, Mezza T, Pontecorvi A, Giaccari A, Cinti F. Erythrocyte Membrane Fluidity and Omega-3 Fatty Acid Intake: Current Outlook and Perspectives for a Novel, Nutritionally Modifiable Cardiovascular Risk Factor. Nutrients 2024; 16:4318. [PMID: 39770939 PMCID: PMC11676811 DOI: 10.3390/nu16244318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Omega-3 fatty acids reduce triglycerides and have several positive effects on different organs and systems. They are also found in the plasma membrane in variable amounts in relation to genetics and diet. However, it is still unclear whether omega-3 supplementation can reduce the occurrence of major cardiovascular events (MACEs). Two trials, REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial), with highly purified EPA, and STRENGTH (Effect of High-Dose Omega-3 Fatty Acids vs. Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk), with a combination of EPA and DHA, have produced different outcomes, triggering a scientific debate on possible explanations for the discrepancies. Furthermore, doubts have arisen as to the anti-inflammatory and anti-aggregating activity of these compounds. Recent studies have, however, highlighted interesting effects of EPA and DHA on erythrocyte membrane fluidity (EMF). EMF is governed by a complex and dynamic biochemical framework, with fatty acids playing a central role. Furthermore, it can be easily measured in erythrocytes from a blood sample using fluorescent probes. Recent research has also shown that EMF could act as a possible cardiovascular risk factor biomarker. This review aims to synthetize the latest evidence on erythrocyte membrane fluidity, exploring its potential role as a biomarker of residual cardiovascular risk and discussing its clinical relevance. Further, we aim to dissect the possible biological mechanisms that link omega-3 modifiable membrane fluidity to cardiovascular health.
Collapse
Affiliation(s)
- Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Shawn Gugliandolo
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Cassandra Morciano
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Adriana Avolio
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Amelia Splendore
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Mezza
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
2
|
Mihuta MS, Paul C, Borlea A, Roi CM, Pescari D, Velea-Barta OA, Mozos I, Stoian D. Connections between serum Trimethylamine N-Oxide (TMAO), a gut-derived metabolite, and vascular biomarkers evaluating arterial stiffness and subclinical atherosclerosis in children with obesity. Front Endocrinol (Lausanne) 2023; 14:1253584. [PMID: 37850094 PMCID: PMC10577381 DOI: 10.3389/fendo.2023.1253584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Childhood obesity leads to early subclinical atherosclerosis and arterial stiffness. Studying biomarkers like trimethylamine N-oxide (TMAO), linked to cardio-metabolic disorders in adults, is crucial to prevent long-term cardiovascular issues. Methods The study involved 70 children aged 4 to 18 (50 obese, 20 normal-weight). Clinical examination included BMI, waist measurements, puberty stage, the presence of acanthosis nigricans, and irregular menstrual cycles. Subclinical atherosclerosis was assessed by measuring the carotid intima-media thickness (CIMT), and the arterial stiffness was evaluated through surrogate markers like the pulse wave velocity (PWV), augmentation index (AIx), and peripheral and central blood pressures. The blood biomarkers included determining the values of TMAO, HOMA-IR, and other usual biomarkers investigating metabolism. Results The study detected significantly elevated levels of TMAO in obese children compared to controls. TMAO presented positive correlations to BMI, waist circumference and waist-to-height ratio and was also observed as an independent predictor of all three parameters. Significant correlations were observed between TMAO and vascular markers such as CIMT, PWV, and peripheral BP levels. TMAO independently predicts CIMT, PWV, peripheral BP, and central SBP levels, even after adding BMI, waist circumference, waist-to-height ratio, puberty development and age in the regression model. Obese children with high HOMA-IR presented a greater weight excess and significantly higher vascular markers, but TMAO levels did not differ significantly from the obese with HOMA-IR Conclusion Our study provides compelling evidence supporting the link between serum TMAO, obesity, and vascular damage in children. These findings highlight the importance of further research to unravel the underlying mechanisms of this connection.
Collapse
Affiliation(s)
- Monica Simina Mihuta
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Corina Paul
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Borlea
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Mihaela Roi
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Denisa Pescari
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Alexandra Velea-Barta
- 3rd Department of Odontotherapy and Endodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Mozos
- Department of Functional Sciences—Pathophysiology, Center for Translational Research and Systems Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Dana Stoian
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
3
|
Oxidative Stress and Inflammation: From Mechanisms to Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10040753. [PMID: 35453503 PMCID: PMC9031318 DOI: 10.3390/biomedicines10040753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress and inflammation are two phenomena that are directly involved in practically all pathologies and especially in aging [...].
Collapse
|
4
|
Wu N, Zheng F, Li N, Han Y, Xiong XQ, Wang JJ, Chen Q, Li YH, Zhu GQ, Zhou YB. RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biol 2021; 48:102204. [PMID: 34883403 PMCID: PMC8661704 DOI: 10.1016/j.redox.2021.102204] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
Superoxide and vascular smooth muscle cells (VSMCs) migration and proliferation play crucial roles in the vascular remodeling. Vascular remodeling contributes to the development and complications of hypertension. Rho family GTPase 3 (RND3 or RhoE), an atypical small Rho-GTPase, is known to be involved in cancer development and metastasis. However, the roles of RND3 in superoxide production and cardiovascular remodeling are unknown. Here, we uncovered the critical roles of RND3 in attenuating superoxide production, VSMCs migration and proliferation, and vascular remodeling in hypertension and its underline mechanisms. VSMCs were isolated and prepared from thoracic aorta of Male Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). RND3 mRNA and protein expressions in arteries and VSMCs were down-regulated in SHR. RND3 overexpression in VSMCs reduced NAD(P)H oxidase (NOX) activity, NOX1 and NOX2 expressions, mitochondria superoxide generation, and H2O2 production in SHR. Moreover, the RND3 overexpression inhibited VSMCs migration and proliferation in SHR, which were similar to the effects of NOX1 inhibitor ML171 plus NOX2 inhibitor GSK2795039. Rho-associated kinase 1 (ROCK1) and RhoA expressions and myosin phosphatase targeting protein 1 (MYPT1) phosphorylation in VSMCs were increased in SHR, which were prevented by RND3 overexpression. ROCK1 overexpression promoted NOX1 and NOX2 expressions, superoxide and H2O2 production, VSMCs migration and proliferation in both WKY and SHR, which were attenuated by RND3 overexpression. Adenoviral-mediated RND3 overexpression in SHR attenuated hypertension, vascular remodeling and oxidative stress. These results indicate that RND3 attenuates VSMCs migration and proliferation, hypertension and vascular remodeling in SHR via inhibiting ROCK1-NOX1/2 and mitochondria superoxide signaling.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Na Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Zhou B, Wu LL, Zheng F, Wu N, Chen AD, Zhou H, Chen JY, Chen Q, Li YH, Kang YM, Zhu GQ. miR-31-5p Promotes Oxidative Stress and Vascular Smooth Muscle Cell Migration in Spontaneously Hypertensive Rats via Inhibiting FNDC5 Expression. Biomedicines 2021; 9:biomedicines9081009. [PMID: 34440213 PMCID: PMC8393189 DOI: 10.3390/biomedicines9081009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/16/2023] Open
Abstract
Oxidative stress and the migration of vascular smooth muscle cells (VSMCs) are important for vascular remodeling in a variety of vascular diseases. miR-31-5p promotes cell migration in colorectal cancer cells but inhibits cell migration in renal cell carcinoma. However, whether miR-31-5p is involved in oxidative stress and VSMC migration remains unknown. This study shows the crucial roles of miR-31-5p in oxidative stress and VSMC migration, as well as underlying mechanisms. Experiments were carried out in primary VSMCs from aortic media of Wistar–Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), as well as the A7r5 cell line. Oxidative stress was assessed by NADPH oxidase (NOX) expression, NOX activity, and reactive oxygen species (ROS) production. Cell migration was evaluated with a Boyden chamber assay and a wound healing assay. The miR-31-5p mimic and inhibitor promoted and attenuated oxidative stress and cell migration in the VSMCs of SHR, respectively. A dual-luciferase reporter assay indicated that miR-31-5p targeted the 3’UTR domain of FNDC5. The miR-31-5p level was raised and FNDC5 expression was reduced in the VSMCs of SHR compared with those of WKY. The miR-31-5p mimic reduced FNDC5 expression in the A7r5 cells and the VSMCs of both WKY and SHR, while the miR-31-5p inhibitor only increased FNDC5 expression in the VSMCs of SHR. Exogenous FNDC5 attenuated not only the oxidative stress and VSMC migration in SHR but also the roles of the miR-31-5p mimic in inducing oxidative stress and VSMC migration. These results indicate that miR-31-5p promotes oxidative stress and VSMC migration in SHR via inhibiting FNDC5 expression. The increased miR-31-5p and reduced FNDC5 in the VSMCs of SHR contribute to enhanced oxidative stress and cell migration.
Collapse
Affiliation(s)
- Bing Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Lu-Lu Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Hong Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Jing-Yu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China; (Q.C.); (Y.-H.L.)
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China; (Q.C.); (Y.-H.L.)
| | - Yu-Ming Kang
- Cardiovascular Research Center, Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Medicine, Xi’an 710061, China;
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (B.Z.); (L.-L.W.); (F.Z.); (N.W.); (A.-D.C.); (H.Z.); (J.-Y.C.)
- Correspondence: ; Tel./Fax: +86-25-86869351
| |
Collapse
|
6
|
Paul N, Sarkar R, Sarkar S. Zinc protoporphyrin-trimethylamine-N-oxide complex involves cholesterol oxidation causing atherosclerosis. J Biol Inorg Chem 2021; 26:367-374. [PMID: 33713182 DOI: 10.1007/s00775-021-01861-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/05/2021] [Indexed: 01/25/2023]
Abstract
Metabolism of food protein by gut microbes produce trimethylamine which on oxidation by hepatic flavin-containing monooxygenases is transformed to trimethylamine-N-oxide (TMAO). TMAO has recently been implicated as a biomarker for atherosclerosis. TMAO, as (CH3)3N+-O-), is ionic and so a hydrophilic molecule that is freely available in blood plasma. For the effective interaction with lipid-soluble molecules, TMAO should be phase transferred to the lipid site. We show that the free TMAO is effectively bonded to zinc protoporphyrin IX dimethyl ester [ZnPPDME] to yield [TMAOZnPPDME] using phase transfer reaction. The zinc protoporphyrin IX, [ZnPP], in general, available in blood may form [TMAOZnPP] complex. The nature of such interaction between TMAO and [ZnPP] has been structurally shown using a model complex, [TMAOZnTPP] (TPP = tetraphenylporphyrin). These complexes readily move from the polar plasma to the non-polar (lipid) site to act as the oxo-transfer agent to oxidize cholesterol causing atherosclerosis. Chromatographic and circular dichroism (CD) studies show that either TMAO or [ZnPP] alone cannot oxidize cholesterol. Free TMAO bonded with zinc-protoporphyrin IX, [ZnPP], in blood plasma as [TMAOZnPP] is transported to the lipid site and this is the reacting species to oxidize cholesterol causing atherosclerosis.
Collapse
Affiliation(s)
- Navendu Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, West Bengal, 711103, India
| | - Rudra Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, West Bengal, 711103, India
| | - Sabyasachi Sarkar
- Department of Chemistry and Applied Chemistry, Ramakrishna Mission Vidyamandira, Belurmath, West Bengal, 711202, India.
| |
Collapse
|