1
|
Reiter RJ, De Almeida Chuffa LG, Simão VA, Martín Giménez VM, De Las Heras N, Spandidos DA, Manucha W. Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review). Int J Oncol 2024; 65:114. [PMID: 39450562 PMCID: PMC11575929 DOI: 10.3892/ijo.2024.5702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Significant advancements have been made in cancer therapy; however, limitations remain with some conventional approaches. Adjuvants are agents used alongside primary treatments to enhance their efficacy and the treatment outcomes of patients. Modern lifestyles contribute to deficiencies in melatonin and vitamin D. Limited sun exposure affects vitamin D synthesis, and artificial light at night suppresses melatonin production. Both melatonin and vitamin D possess anti‑inflammatory, immune‑boosting and anticancer properties, rendering them potential adjuvants of interest. Studies suggest melatonin and vitamin D supplementation may address antioxidant imbalances in lip, oral and pharyngeal cancers. Moreover, promising results from breast, head and neck, brain, and osteosarcoma research indicate potential for tumor growth inhibition, improved survival, and a better quality of life of patients with cancer. The radioprotective properties of melatonin and vitamin D are another exciting area of exploration, potentially enhancing radiotherapy effectiveness while reducing side effects. For its part, the sleep‑promoting effects of melatonin may indirectly benefit patients with cancer by influencing the immune system. Thus, the prevalence of vitamin D and melatonin deficiencies highlights the importance of supplementation, as lower levels can worsen side‑effects from cancer treatments. The present review explores the potential of combining melatonin and vitamin D as synergistic adjuvants for cancer therapy. These agents have shown promise individually in cancer prevention and treatment, and their combined effects warrant investigation. Therefore, large‑scale controlled trials are crucial to definitively determine the optimal dosage, safety and efficacy of this combination in improving the lives of patients with cancer.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Luiz Gustavo De Almeida Chuffa
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil
| | - Virna Margarita Martín Giménez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Natalia De Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Walter Manucha
- Pharmacology Area, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
2
|
Martínez-Campa C, Álvarez-García V, Alonso-González C, González A, Cos S. Melatonin and Its Role in the Epithelial-to-Mesenchymal Transition (EMT) in Cancer. Cancers (Basel) 2024; 16:956. [PMID: 38473317 DOI: 10.3390/cancers16050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a cell-biological program that occurs during the progression of several physiological processes and that can also take place during pathological situations such as carcinogenesis. The EMT program consists of the sequential activation of a number of intracellular signaling pathways aimed at driving epithelial cells toward the acquisition of a series of intermediate phenotypic states arrayed along the epithelial-mesenchymal axis. These phenotypic features include changes in the motility, conformation, polarity and functionality of cancer cells, ultimately leading cells to stemness, increased invasiveness, chemo- and radioresistance and the formation of cancer metastasis. Amongst the different existing types of the EMT, type 3 is directly involved in carcinogenesis. A type 3 EMT occurs in neoplastic cells that have previously acquired genetic and epigenetic alterations, specifically affecting genes involved in promoting clonal outgrowth and invasion. Markers such as E-cadherin; N-cadherin; vimentin; and transcription factors (TFs) like Twist, Snail and ZEB are considered key molecules in the transition. The EMT process is also regulated by microRNA expression. Many miRNAs have been reported to repress EMT-TFs. Thus, Snail 1 is repressed by miR-29, miR-30a and miR-34a; miR-200b downregulates Slug; and ZEB1 and ZEB2 are repressed by miR-200 and miR-205, respectively. Occasionally, some microRNA target genes act downstream of the EMT master TFs; thus, Twist1 upregulates the levels of miR-10b. Melatonin is an endogenously produced hormone released mainly by the pineal gland. It is widely accepted that melatonin exerts oncostatic actions in a large variety of tumors, inhibiting the initiation, progression and invasion phases of tumorigenesis. The molecular mechanisms underlying these inhibitory actions are complex and involve a great number of processes. In this review, we will focus our attention on the ability of melatonin to regulate some key EMT-related markers, transcription factors and micro-RNAs, summarizing the multiple ways by which this hormone can regulate the EMT. Since melatonin has no known toxic side effects and is also known to help overcome drug resistance, it is a good candidate to be considered as an adjuvant drug to conventional cancer therapies.
Collapse
Affiliation(s)
- Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
3
|
Das N, Mukherjee S, Das A, Gupta P, Bandyopadhyay A, Chattopadhyay S. Intra-tumor ROS amplification by melatonin interferes in the apoptosis-autophagy-inflammation-EMT collusion in the breast tumor microenvironment. Heliyon 2024; 10:e23870. [PMID: 38226217 PMCID: PMC10788523 DOI: 10.1016/j.heliyon.2023.e23870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Epidemiological as well as experimental studies have established that the pineal hormone melatonin has inhibitory effects on different types of cancers. Several mechanisms have been proposed for the anticancer activities of melatonin, but the fundamental molecular pathways still require clarity. We developed a mouse model of breast cancer using Ehrlich's ascites carcinoma (injected in the 4th mammary fat pad of female Swiss albino mice) and investigated the possibility of targeting the autophagy-inflammation-EMT colloquy to restrict breast tumor progression using melatonin as intervention. Contrary to its conventional antioxidant role, melatonin was shown to augment intracellular ROS and initiate ROS-dependent apoptosis in our system, by modulating the p53/JNK & NF-κB/pJNK expressions/interactions. Melatonin-induced ROS promoted SIRT1 activity. Interplay between SIRT1 and NF-κB/p65 is known to play a pivotal role in regulating the crosstalk between autophagy and inflammation. Persistent inflammation in the tumor microenvironment and subsequent activation of the IL-6/STAT3/NF-κB feedback loop promoted EMT and suppression of autophagy through activation of PI3K/Akt/mTOR signaling pathway. Melatonin disrupted NF-κB/SIRT1 interactions blocking IL-6/STAT3/NF-κB pathway. This led to reversal of pro-inflammatory bias in the breast tumor microenvironment and augmented autophagic responses. The interactions between p62/Twist1, NF-κB/Beclin1 and NF-κB/Slug were altered by melatonin to strike a balance between autophagy, inflammation and EMT, leading to tumor regression. This study provides critical insights into how melatonin could be utilized in treating breast cancer via inhibition of the PI3K/Akt/mTOR signaling and differential modulation of SIRT1 and NF-κB proteins, leading to the establishment of apoptotic and autophagic fates in breast cancer cells.
Collapse
Affiliation(s)
- Nirmal Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Sudeshna Mukherjee
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
- Department of Physiology and Allied Sciences, Amity Institute of Health Allied Sciences, Amity University, Uttar Pradesh, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Amit Bandyopadhyay
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
- Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata-700098, India
| |
Collapse
|
4
|
Rao X, Zhou D, Deng H, Chen Y, Wang J, Zhou X, Jie X, Xu Y, Wu Z, Wang G, Dong X, Zhang S, Meng R, Wu C, Xing S, Fan K, Wu G, Zhou R. Activation of NLRP3 inflammasome in lung epithelial cells triggers radiation-induced lung injury. Respir Res 2023; 24:25. [PMID: 36694200 PMCID: PMC9872296 DOI: 10.1186/s12931-023-02331-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is the most common and serious complication of chest radiotherapy. However, reported radioprotective agents usually lead to radiation resistance in tumor cells. The key to solving this problem is to distinguish between the response of tumor cells and normal lung epithelial cells to radiation damage. METHODS RNA-Seq was used to recognize potential target of alleviating the progression of RILI as well as inhibiting tumor growth. The activation of NLRP3 inflammasome in lung epithelial cells was screened by qRT-PCR, western blotting, immunofluorescence, and ELISA. An in vivo model of RILI and in vitro conditioned culture model were constructed to evaluate the effect of NLRP3/interleukin-1β on fibroblasts activation. ROS, ATP, and (NADP)+/NADP(H) level in lung epithelial cells was detected to explore the mechanism of NLRP3 inflammasome activation. The lung macrophages of the mice were deleted to evaluate the role of lung epithelial cells in RILI. Moreover, primary cells were extracted to validate the results obtained from cell lines. RESULTS NLRP3 activation in epithelial cells after radiation depends on glycolysis-related reactive oxygen species accumulation. DPYSL4 is activated and acts as a negative regulator of this process. The NLRP3 inflammasome triggers interleukin-1β secretion, which directly affects fibroblast activation, proliferation, and migration, eventually leading to lung fibrosis. CONCLUSIONS Our study suggests that NLRP3 inflammasome activation in lung epithelial cells is essential for radiation-induced lung injury. These data strongly indicate that targeting NLRP3 may be effective in reducing radiation-induced lung injury in clinical settings.
Collapse
Affiliation(s)
- Xinrui Rao
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Dong Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Huilin Deng
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yunshang Chen
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jian Wang
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaoshu Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaohua Jie
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yingzhuo Xu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zilong Wu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Geng Wang
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaorong Dong
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Sheng Zhang
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui Meng
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Chuangyan Wu
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Shijie Xing
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Fan
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Gang Wu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
5
|
New Insights in Radiotherapy. Biomedicines 2022; 10:biomedicines10081931. [PMID: 36009481 PMCID: PMC9405873 DOI: 10.3390/biomedicines10081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
|
6
|
Alonso-González C, González-Abalde C, Menéndez-Menéndez J, González-González A, Álvarez-García V, González-Cabeza A, Martínez-Campa C, Cos S. Melatonin Modulation of Radiation-Induced Molecular Changes in MCF-7 Human Breast Cancer Cells. Biomedicines 2022; 10:1088. [PMID: 35625825 PMCID: PMC9138876 DOI: 10.3390/biomedicines10051088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Cristina González-Abalde
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain;
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-Cabeza
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| |
Collapse
|
7
|
Wang L, Wang C, Choi WS. Use of Melatonin in Cancer Treatment: Where Are We? Int J Mol Sci 2022; 23:ijms23073779. [PMID: 35409137 PMCID: PMC8998229 DOI: 10.3390/ijms23073779] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer represents a large group of diseases accounting for nearly 10 million deaths each year. Various treatment strategies, including surgical resection combined with chemotherapy, radiotherapy, and immunotherapy, have been applied for cancer treatment. However, the outcomes remain largely unsatisfying. Melatonin, as an endogenous hormone, is associated with the circadian rhythm moderation. Many physiological functions of melatonin besides sleep–wake cycle control have been identified, such as antioxidant, immunomodulation, and anti-inflammation. In recent years, an increasing number of studies have described the anticancer effects of melatonin. This has drawn our attention to the potential usage of melatonin for cancer treatment in the clinical setting, although huge obstacles still exist before its wide clinical administration is accepted. The exact mechanisms behind its anticancer effects remain unclear, and the specific characters impede its in vivo investigation. In this review, we will summarize the latest advances in melatonin studies, including its chemical properties, the possible mechanisms for its anticancer effects, and the ongoing clinical trials. Importantly, challenges for the clinical application of melatonin will be discussed, accompanied with our perspectives on its future development. Finally, obstacles and perspectives of using melatonin for cancer treatment will be proposed. The present article will provide a comprehensive foundation for applying melatonin as a preventive and therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Leilei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Chuan Wang
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
| | - Wing Shan Choi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China;
- Correspondence: ; Tel.: +852-28590266
| |
Collapse
|
8
|
Das NK, Samanta S. The potential anti-cancer effects of melatonin on breast cancer. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Melatonin is the primary hormone of the pineal gland that is secreted at night. It regulates many physiological functions, including the sleep-wake cycle, gonadal activity, free radical scavenging, immunomodulation, neuro-protection, and cancer progression. The precise functions of melatonin are mediated by guanosine triphosphate (GTP)-binding protein (G-protein) coupled melatonin receptor 1 (MT1) and MT2 receptors. However, nuclear receptors are also associated with melatonin activity. Circadian rhythm disruption, shift work, and light exposure at night hamper melatonin production. Impaired melatonin level promotes various pathophysiological changes, including cancer. In our modern society, breast cancer is a serious problem throughout the world. Several studies have been indicated the link between low levels of melatonin and breast cancer development. Melatonin has oncostatic properties in breast cancer cells. This indolamine advances apoptosis, which arrests the cell cycle and regulates metabolic activity. Moreover, melatonin increases the treatment efficacy of cancer and can be used as an adjuvant with chemotherapeutic agents.
Collapse
Affiliation(s)
- Naba Kumar Das
- Department of Physiology, Midnapore College, Midnapore 721101, Paschim Medinipur, West Bengal, India
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore 721101, Paschim Medinipur, West Bengal, India
| |
Collapse
|
9
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
Jit BP, Pradhan B, Dash R, Bhuyan PP, Behera C, Behera RK, Sharma A, Alcaraz M, Jena M. Phytochemicals: Potential Therapeutic Modulators of Radiation Induced Signaling Pathways. Antioxidants (Basel) 2021; 11:antiox11010049. [PMID: 35052553 PMCID: PMC8773162 DOI: 10.3390/antiox11010049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation results in extensive damage to biological systems. The massive amount of ionizing radiation from nuclear accidents, radiation therapy (RT), space exploration, and the nuclear battlefield leads to damage to biological systems. Radiation injuries, such as inflammation, fibrosis, and atrophy, are characterized by genomic instability, apoptosis, necrosis, and oncogenic transformation, mediated by the activation or inhibition of specific signaling pathways. Exposure of tumors or normal cells to different doses of ionizing radiation could lead to the generation of free radical species, which can release signal mediators and lead to harmful effects. Although previous FDA-approved agents effectively mitigate radiation-associated toxicities, their use is limited due to their high cellular toxicities. Preclinical and clinical findings reveal that phytochemicals derived from plants that exhibit potent antioxidant activities efficiently target several signaling pathways. This review examined the prospective roles played by some phytochemicals in altering signal pathways associated with radiation response.
Collapse
Affiliation(s)
- Bimal Prasad Jit
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Rutumbara Dash
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, India;
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
| | - Rajendra Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Ashok Sharma
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Miguel Alcaraz
- Radiology and Physical Medicine Department, School of Medicine, Campus de Excelencia Internacional de Ámbito Regional (CEIR)-Campus Mare Nostrum (CMN), Universidad de Murcia, 30100 Murcia, Spain
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| |
Collapse
|
11
|
Mir SM, Aliarab A, Goodarzi G, Shirzad M, Jafari SM, Qujeq D, Samavarchi Tehrani S, Asadi J. Melatonin: A smart molecule in the DNA repair system. Cell Biochem Funct 2021; 40:4-16. [PMID: 34672014 DOI: 10.1002/cbf.3672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022]
Abstract
DNA repair is an important pathway for the protection of DNA molecules from destruction. DNA damage can be produced by oxidative reactive nitrogen or oxygen species, irritation, alkylating agents, depurination and depyrimidination; in this regard, DNA repair pathways can neutralize the negative effects of these factors. Melatonin is a hormone secreted from the pineal gland with an antioxidant effect by binding to oxidative factors. In addition, the effect of melatonin on DNA repair pathways has been proven by the literature. DNA repair is carried out by several mechanisms, of which homologous recombination repair (HRR) and non-homologous end-joining (NHEJ) are of great importance. Because of the importance of DNA repair in DNA integrity and the anticancer effect of this pathway, we presented the effect of melatonin on DNA repair factors regarding previous studies conducted in this area.
Collapse
Affiliation(s)
- Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
12
|
Kruk J, Aboul-Enein BH, Duchnik E. Exercise-induced oxidative stress and melatonin supplementation: current evidence. J Physiol Sci 2021; 71:27. [PMID: 34470608 PMCID: PMC8409271 DOI: 10.1186/s12576-021-00812-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Melatonin possesses the indoleamine structure and exerts antioxidant and anti-inflammatory actions and other physiological properties. Physical exercise can influence secretion of melatonin. Melatonin is used as a natural supplement among athletes to regulate sleep cycles and protect muscles against oxidative damage. Despite decades of research, there is still a lack of a comprehensive and critical review on melatonin supplementation and physical activity relationship. The aim of this literature review is to examine the antioxidant, anti-inflammatory and other biological functions played by melatonin with reference to the effect of physical exercise on melatonin secretion and the effect of this compound supplementation on exercise-induced oxidative stress in athletes. Evidence shows that intense exercises disturb antioxidant status of competitive athletes, whereas supplementation with melatonin strengthens antioxidant status in trained athletes in various sports as the compound showed high potency in reduction of the oxidative stress and inflammation markers generated during intense and prolonged exercise.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, Szczecin, Poland.
| | | | - Ewa Duchnik
- Department of Aesthetic Dermatology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
13
|
Vijayan M, Joseph S, James E, Dutta D. A review on radiation induced nausea and vomiting: "Current management strategies and prominence of radio sensitizers". J Oncol Pharm Pract 2021; 27:1061-1072. [PMID: 33947288 DOI: 10.1177/10781552211011539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Radiations dissipated are high energy waves used mostly as treatment intervention in controlling the unwanted multiplication of cell. About 60%-65% of cancer treatment requires radiation therapy and 40%-80% of radiation therapy causes RINV which are true troublemakers. Radiation therapy (RT) is targeted therapy mostly used to treat early stages of tumour and prevent their reoccurrence. They mainly destroy the genetic material (DNA) of cancerous cells to avoid their unwanted growth and division. The RINV affects the management and quality of life of patients which further reduces the patient outcome. RINV depends on RT related factors (dose, fractionation, irradiation volume, RT techniques) and patient related factors like (gender, health conditions, age, concurrent chemotherapy, psychological state, and tumour stage). RT is an active area of research and there is only limited progress in tackling the RINV crisis. Advanced technological methods are adopted that led to better understanding of total lethal doses. Radiation therapy also affects the immunity system that leads to radiation induced immune responses and inflammation. Radio sensitizers are used to sensitize the tumour cells to radiations that further prevent the normal cell damage from radiation exposure. There is a need for future studies and researches to re-evaluate the data available from previous trials in RINV to make better effective antiemetic regimen. The article focuses on radiation therapy induced nausea and vomiting along with their mechanism of action and treatment strategies in order to have a remarkable patient care.
Collapse
Affiliation(s)
- Meenu Vijayan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sherin Joseph
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Emmanuel James
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Debnarayan Dutta
- Department of Radiation Oncology, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
14
|
Reiter RJ, Sharma R, Rodriguez C, Martin V, Rosales-Corral S, Zuccari DAPDC, Chuffa LGDA. Part-time cancers and role of melatonin in determining their metabolic phenotype. Life Sci 2021; 278:119597. [PMID: 33974932 DOI: 10.1016/j.lfs.2021.119597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
This brief review describes the association of the endogenous pineal melatonin rhythm with the metabolic flux of solid tumors, particularly breast cancer. It also summarizes new information on the potential mechanisms by which endogenously-produced or exogenously-administered melatonin impacts the metabolic phenotype of cancer cells. The evidence indicates that solid tumors may redirect their metabolic phenotype from the pathological Warburg-type metabolism during the day to the healthier mitochondrial oxidative phosphorylation on a nightly basis. Thus, they function as cancer cells only during the day and as healthier cells at night, that is, they are only part-time cancerous. This switch to oxidative phosphorylation at night causes cancer cells to exhibit a reduced tumor phenotype and less likely to rapidly proliferate or to become invasive or metastatic. Also discussed is the likelihood that some solid tumors are especially aggressive during the day and much less so at night due to the nocturnal rise in melatonin which determines their metabolic state. We further propose that when melatonin is used/tested in clinical trials, a specific treatment paradigm be used that is consistent with the temporal metabolic changes in tumor metabolism. Finally, it seems likely that the concurrent use of melatonin in combination with conventional chemotherapies also would improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Carmen Rodriguez
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, Oviedo, 33006, Spain
| | - Vanesa Martin
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, Oviedo, 33006, Spain
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara CP 45150, Mexico
| | | | | |
Collapse
|
15
|
Melatonin as an Oncostatic Molecule Based on Its Anti-Aromatase Role in Breast Cancer. Int J Mol Sci 2021; 22:ijms22010438. [PMID: 33406787 PMCID: PMC7795758 DOI: 10.3390/ijms22010438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the most common type of cancer. In the developmental stages of breast cancer, estrogens are strongly involved. As estrogen synthesis is regulated by the enzyme aromatase, targeting the activity of this enzyme represents a therapeutic option. The pineal hormone melatonin may exert a suppressive role on aromatase activity, leading to reduced estrogen biosynthesis. A melatonin-mediated decrease in the expression of aromatase promoters and associated genes would provide suitable evidence of this molecule’s efficacy as an aromatase inhibitor. Furthermore, melatonin intensifies radiation-induced anti-aromatase effects and counteracts the unwanted disadvantages of chemotherapeutic agents. In this manner, this review summarizes the inhibitory role of melatonin in aromatase action, suggesting its role as a possible oncostatic molecule in breast cancer.
Collapse
|