1
|
Lin CH, Hsieh FC, Chang YC, Yang CY, Hsu HW, Yang CC, Tam HMH, Wu HY. Targeting the conserved coronavirus octamer motif GGAAGAGC is a strategy for the development of coronavirus vaccine. Virol J 2023; 20:267. [PMID: 37968733 PMCID: PMC10652495 DOI: 10.1186/s12985-023-02231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Coronaviruses are pathogens of humans and animals that cause widespread and costly diseases. The development of effective strategies to combat the threat of coronaviruses is therefore a top priority. The conserved coronavirus octamer motif 5'GGAAGAGC3' exists in the 3' untranslated region of all identified coronaviruses. In the current study, we aimed to examine whether targeting the coronavirus octamer motif GGAAGAGC is a promising approach to develop coronavirus vaccine. METHODS Plaque assays were used to determine the titers of mouse hepatitis virus (MHV)-A59 octamer mutant (MHVoctm) and wild-type (wt) MHV-A59 (MHVwt). Western blotting was used for the determination of translation efficiency of MHVoctm and MHVwt. Plaque assays and RT-qPCR were employed to examine whether MHVoctm was more sensitive to interferon treatment than MHVwt. Weight loss, clinical signs, survival rate, viral RNA detection and histopathological examination were used to evaluate whether MHVoctm was a vaccine candidate against MHVwt infection in BALB/c mice. RESULTS In this study, we showed that (i) the MHVoctm with mutation of coronavirus octamer was able to grow to high titers but attenuated in mice, (ii) with the reduced multiplicity of infection (MOI), the difference in gene expression between MHVoctm and MHVwt became more evident in cultured cells, (iii) MHVoctm was more sensitive to interferon treatment than MHVwt and (iv) mice inoculated with MHVoctm were protected from MHVwt infection. CONCLUSIONS Based on the results obtained from cultured cells, it was suggested that the synergistic effects of octamer mutation, multiplicity of infection and immune response may be a mechanism explaining the distinct phenotypes of octamer-mutated coronavirus in cell culture and mice. In addition, targeting the conserved coronavirus octamer motif is a strategy for development of coronavirus vaccine. Since the conserved octamer exists in all coronaviruses, this strategy of targeting the conserved octamer motif can also be applied to other human and animal coronaviruses for the development of coronavirus vaccines, especially the emergence of novel coronaviruses such as SARS-CoV-2, saving time and cost for vaccine development and disease control.
Collapse
Grants
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003, 111-2327-B-005 -003 and 112-2313-B-005-041 National Science and Technology Council, Taiwan, R.O.C.
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003, 111-2327-B-005 -003 and 112-2313-B-005-041 National Science and Technology Council, Taiwan, R.O.C.
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003, 111-2327-B-005 -003 and 112-2313-B-005-041 National Science and Technology Council, Taiwan, R.O.C.
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003, 111-2327-B-005 -003 and 112-2313-B-005-041 National Science and Technology Council, Taiwan, R.O.C.
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003, 111-2327-B-005 -003 and 112-2313-B-005-041 National Science and Technology Council, Taiwan, R.O.C.
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003, 111-2327-B-005 -003 and 112-2313-B-005-041 National Science and Technology Council, Taiwan, R.O.C.
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003, 111-2327-B-005 -003 and 112-2313-B-005-041 National Science and Technology Council, Taiwan, R.O.C.
- 109-2313-B-005 -013 -MY3, 110-2327-B-005 -003, 111-2327-B-005 -003 and 112-2313-B-005-041 National Science and Technology Council, Taiwan, R.O.C.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Chia Chang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hon-Man-Herman Tam
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
2
|
Lin CH, Tam HMH, Yang CY, Hsieh FC, Wang JL, Yang CC, Hsu HW, Liu HP, Wu HY. Evolution of the coronavirus spike protein in the full-length genome and defective viral genome under diverse selection pressures. J Gen Virol 2023; 104:001920. [PMID: 37997889 PMCID: PMC10768696 DOI: 10.1099/jgv.0.001920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
How coronaviruses evolve by altering the structures of their full-length genome and defective viral genome (DVG) under dynamic selection pressures has not been studied. In this study, we aimed to experimentally identify the dynamic evolutionary patterns of the S protein sequence in the full-length genome and DVG under diverse selection pressures, including persistence, innate immunity and antiviral drugs. The evolutionary features of the S protein sequence in the full-length genome and in the DVG under diverse selection pressures are as follows: (i) the number of nucleotide (nt) mutations does not necessarily increase with the number of selection pressures; (ii) certain types of selection pressure(s) can lead to specific nt mutations; (iii) the mutated nt sequence can be reverted to the wild-type nt sequence under the certain type of selection pressure(s); (iv) the DVG can also undergo mutations and evolve independently of the full-length genome; and (v) DVG species are regulated during evolution under diverse selection pressures. The various evolutionary patterns of the S protein sequence in the full-length genome and DVG identified in this study may contribute to coronaviral fitness under diverse selection pressures.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hon-Man-Herman Tam
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Jiun-Long Wang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| |
Collapse
|
3
|
Sepulcri C, Dentone C, Mikulska M, Bruzzone B, Lai A, Fenoglio D, Bozzano F, Bergna A, Parodi A, Altosole T, Delfino E, Bartalucci G, Orsi A, Di Biagio A, Zehender G, Ballerini F, Bonora S, Sette A, De Palma R, Silvestri G, De Maria A, Bassetti M. The Longest Persistence of Viable SARS-CoV-2 With Recurrence of Viremia and Relapsing Symptomatic COVID-19 in an Immunocompromised Patient-A Case Study. Open Forum Infect Dis 2021; 8:ofab217. [PMID: 34796242 PMCID: PMC8135455 DOI: 10.1093/ofid/ofab217] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Immunocompromised patients show prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal swabs. We report a case of prolonged persistence of viable SARS-CoV-2 associated with clinical relapses of coronavirus disease 2019 (COVID-19) in a patient with mantle cell lymphoma who underwent treatment with rituximab, bendamustine, cytarabine with consequent lymphopenia and hypogammaglobulinemia. METHODS Nasopharyngeal swabs and blood samples were tested for SARS-CoV-2 by real-time polymerase chain reaction (RT-PCR). On 5 positive nasopharyngeal swabs, we performed viral culture and next-generation sequencing. We analyzed the patient's adaptive and innate immunity to characterize T- and NK-cell subsets. RESULTS SARS-CoV-2 RT-PCR on nasopharyngeal swabs samples remained positive for 268 days. All 5 performed viral cultures were positive, and genomic analysis confirmed a persistent infection with the same strain. Viremia resulted positive in 3 out of 4 COVID-19 clinical relapses and cleared each time after remdesivir treatment. The T- and NK-cell dynamic was different in aviremic and viremic samples, and no SARS-CoV-2-specific antibodies were detected throughout the disease course. CONCLUSIONS In our patient, SARS-CoV-2 persisted with proven infectivity for >8 months. Viremia was associated with COVID-19 relapses, and remdesivir treatment was effective in viremia clearance and symptom remission, although it was unable to clear the virus from the upper respiratory airways. During the viremic phase, we observed a low frequency of terminal effector CD8+ T lymphocytes in peripheral blood; these are probably recruited in inflammatory tissue for viral eradication. In addition, we found a high level of NK-cell repertoire perturbation with relevant involvement during SARS-CoV-2 viremia.
Collapse
Affiliation(s)
- Chiara Sepulcri
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Chiara Dentone
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Malgorzata Mikulska
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Bianca Bruzzone
- Hygiene Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research, Cytofluorimetry Unit, University of Genoa, Genoa, Italy
- Biotherapy Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Federica Bozzano
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Annalisa Bergna
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Alessia Parodi
- Biotherapy Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Tiziana Altosole
- Center of Excellence for Biomedical Research, Cytofluorimetry Unit, University of Genoa, Genoa, Italy
| | - Emanuele Delfino
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giulia Bartalucci
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Andrea Orsi
- Hygiene Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Hygiene Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Gianguglielmo Zehender
- Hygiene Unit, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Filippo Ballerini
- Hematology Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Stefano Bonora
- Infectious Diseases Unit, Ospedale Amedeo di Savoia, University of Turin, Turin, Italy
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Raffaele De Palma
- Biotherapy Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Immunology Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Andrea De Maria
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
4
|
High Intensity Violet Light (405 nm) Inactivates Coronaviruses in Phosphate Buffered Saline (PBS) and on Surfaces. PHOTONICS 2021. [DOI: 10.3390/photonics8100414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It has been proven that visible light with a wavelength of about 405 nm exhibits an antimicrobial effect on bacteria and fungi if the irradiation doses are high enough. Hence, the question arises as to whether this violet light would also be suitable to inactivate SARS-CoV-2 coronaviruses. Therefore, a high-intensity light source was developed and applied to irradiate bovine coronaviruses (BCoV), which are employed as SARS-CoV-2 surrogates for safety reasons. Irradiation is performed in virus solutions diluted with phosphate buffered saline and on steel surfaces. Significant virus reduction by several log levels was observed both in the liquid and on the surface within half an hour with average log reduction doses of 57.5 and 96 J/cm2, respectively. Therefore, it can be concluded that 405 nm irradiation has an antiviral effect on coronaviruses, but special attention should be paid to the presence of photosensitizers in the virus environment in future experiments. Technically, visible violet radiation is therefore suitable for coronavirus reduction, but the required radiation doses are difficult to achieve rapidly.
Collapse
|