1
|
Francisco JA, Paderes MC. Inhibitory Effects of B-, C-, and E-Ring-Truncated Deguelin Derivatives Against A549, HCT116, and MCF-7 Cancer Cells. ACS OMEGA 2023; 8:43109-43117. [PMID: 38024712 PMCID: PMC10652367 DOI: 10.1021/acsomega.3c06619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Deguelin has been extensively studied for its anticancer properties; however, its clinical application has been hindered by concerns about in vivo toxicity. Structural modifications of deguelin including ring truncation have been explored to enhance its pharmacological properties. In this study, the design and straightforward synthesis of a series of B, C, and E (BCE)-ring-truncated deguelin analogues with deoxybenzoin backbone were described. The structure-activity relationships (SARs) were established by evaluation of their inhibitory activities against three cancer cell lines, A549 (adenocarcinomic human alveolar basal epithelial cells), HCT116 (human colorectal cancer cells), and MCF-7 (breast cancer cells). Six derivatives demonstrated significant and selective inhibitory activities. The ketone derivative 3a showed potency against A549 (IC50 = 6.62 μM) while the oxime analogue 6a and D-ring-benzylated ketone analogue 8d exhibited activity against HCT116 (IC50 = 3.43 and 6.96 μM, respectively). Moreover, the D-ring alkylated derivatives 8c and 8e-f were active against MCF-7 cells (IC50 < 10 μM). The potential suitability of the BCE-ring-truncated deguelin derivatives for drug development was further supported by the favorable in silico prediction of their physicochemical properties, druglikeness, and toxicity. This study could provide valuable insights for the further development of novel anticancer agents.
Collapse
Affiliation(s)
- John Alfon
P. Francisco
- Institute of Chemistry, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Monissa C. Paderes
- Institute of Chemistry, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
2
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
3
|
Lin ZY, Yun QZ, Wu L, Zhang TW, Yao TZ. Pharmacological basis and new insights of deguelin concerning its anticancer effects. Pharmacol Res 2021; 174:105935. [PMID: 34644595 DOI: 10.1016/j.phrs.2021.105935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Deguelin is a rotenoid of the flavonoid family, which can be extracted from Lonchocarpus, Derris, or Tephrosia. It possesses the inhibition of cancer cell proliferation by inducing apoptosis through regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, the NF-κB signaling pathway, the Wnt signaling pathway, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway and epidermal growth factor receptor (EGFR) signaling, activating the p38 mitogen-activated protein kinase (MAPK) pathway, repression of Bmi1, targeting cyclooxygenase-2 (COX-2), targeting galectin-1, promotion of glycogen synthase kinase-3β (GSK3β)/FBW7-mediated Mcl-1 destabilization and targeting mitochondria via down-regulating Hexokinases II-mediated glycolysis, PUMA-mediation, which are some crucial molecules which modulate closely cancer cell growth and metastasis. Deguelin inhibits tumor cell propagation and malignant transformation through targeting angiogenesis, targeting lymphangiogenesis, targeting focal adhesion kinase (FAK), inhibiting the CtsZ/FAK signaling pathway, targeting epithelial-mesenchymal transition (EMT), the NF-κB signaling pathway, regulating NIMA-related kinase 2 (NEK2). In addition, deguelin possesses other biological activities, such as targeting cell cycle arrest, modulation of autophagy, inhibition of hedgehog pathway, inducing differentiation of mutated NPM1 acute myeloid leukemia etc. Therefore, deguelin is a promising chemopreventive agent for cancer therapy.
Collapse
Affiliation(s)
- Zhu Yue Lin
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Qu Zhen Yun
- Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Liu Wu
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tian Wen Zhang
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tang Ze Yao
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
4
|
Lokhande KB, Ghosh P, Nagar S, Venkateswara Swamy K. Novel B, C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation. Mol Divers 2021; 26:2295-2309. [PMID: 34626304 DOI: 10.1007/s11030-021-10334-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
The overexpression of cyclin D1 and cyclin E due to their oncogenic potential and amplification has been associated with a higher mortality rate in many cancers. The deguelin is a natural compound, has shown promising anti-cancer activity by directly binding cyclin D1 and cyclin E and thus suppressing its function. The C7a atomic position of deguelin structure contains a proton that generates stabilized radical, as a result, decomposed deguelin reduces its structural stability and significantly decreases its biological activity. To design deguelin derivatives with the reduced potential side effect, series of B, C-ring truncated derivatives were investigated as cyclin D1 and cyclin E inhibitors. R-group-based enumeration was implemented in the deguelin scaffold using the R-group enumeration module of Schrödinger. Drug-Like filters like, REOS and PAINs series were applied to the enumerated compound library to remove compounds containing reactive functional groups. Further, screened compounds were docked within the ligand-binding cavity of cyclin D1 and cyclin E crystal structure, using Glide SP and XP protocol to obtain docking poses. Enrichment calculations were done using SchrÖdinger software, with 1000 decoy compounds (from DUD.E database) and 60 compounds (XP best poses) along with deguelin, to validate the docking protocol. The receiver operating characteristic (ROC) curve indicates R2 = 0.94 for cyclin D1 and R2 = 0.79 for cyclin E, suggesting that the docking protocol is valid. Besides, we explored molecular dynamics simulation to probe the binding stability of deguelin and its derivatives within the binding cavity of cyclin D1 and cyclin E structures which are associated with the cyclin D1 and cyclin E inhibitory mechanism.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, 411033, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Shuchi Nagar
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, 411033, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, 411033, India. .,Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Science & Research, MIT Art, Design and Technology University, Pune, 412201, India.
| |
Collapse
|
5
|
A Michael Acceptor Analogue, SKSI-0412, Down-Regulates Inflammation and Proliferation Factors through Suppressing Signal Transducer and Activator of Transcription 3 Signaling in IL-17A-Induced Human Keratinocyte. Int J Mol Sci 2021; 22:ijms22168813. [PMID: 34445513 PMCID: PMC8396041 DOI: 10.3390/ijms22168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
The activation of signal transducer and activator of transcription 3 (STAT3), as well as up-regulation of cytokines and growth factors to promote STAT3 activation, have been found in the epidermis of psoriatic lesions. Recently, a series of synthetic compounds possessing the Michael acceptor have been reported as STAT3 inhibitors by covalently binding to cysteine of STAT3. We synthesized a Michael acceptor analog, SKSI-0412, and confirmed the binding affinity between STAT3 and SKSI-0412. We hypothesized that the SKSI-0412 can inhibit interleukin (IL)-17A-induced inflammation in keratinocytes. The introduction of IL-17A increased the phosphorylation of STAT3 in keratinocytes, whereas the inactivation of STAT3 by SKSI-0412 reduced IL-17A-induced STAT3 phosphorylation and IκBζ expression. In addition, human β defensin-2 and S100A7, which are regulated by IκBζ, were significantly decreased with SKSI-0412 administration. We also confirmed that SKSI-0412 regulates cell proliferation, which is the major phenotype of psoriasis. Based on these results, we suggest targeting STAT3 with SKSI-0412 as a novel therapeutic strategy to regulate IL-17A-induced psoriatic inflammation in keratinocytes.
Collapse
|
6
|
Li Y, Gao S, Du X, Ji J, Xi Y, Zhai G. Advances in autophagy as a target in the treatment of tumours. J Drug Target 2021; 30:166-187. [PMID: 34319838 DOI: 10.1080/1061186x.2021.1961792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a multi-step lysosomal degradation process, which regulates energy and material metabolism and has been used to maintain homeostasis. Autophagy has been shown to be involved in the regulation of health and disease. But at present, there is no consensus on the relationship between autophagy and tumour, and we consider that it plays a dual role in the occurrence and development of tumour. That is to say, under certain conditions, it can inhibit the occurrence of tumour, but it can also promote the process of tumour. Therefore, autophagy could be used as a target for tumour treatment. The regulation of autophagy plays a synergistic role in the radiotherapy, chemotherapy, phototherapy and immunotherapy of tumour, and nano drug delivery system provides a promising strategy for improving the efficacy of autophagy regulation. This review summarised the progress in the regulatory pathways and factors of autophagy as well as nanoformulations as carriers for the delivery of autophagy modulators.
Collapse
Affiliation(s)
- Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yanwei Xi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
7
|
Kim SJ, Cho NC, Han B, Kim K, Hahn YI, Kim KP, Suh YG, Choi BY, Na HK, Surh YJ. 15-Deoxy-Δ 12,14 -prostaglandin J 2 binds and inactivates STAT3 via covalent modification of cysteine 259 in H-Ras-transformed human breast epithelial cells. FEBS Lett 2021; 595:604-622. [PMID: 33452674 DOI: 10.1002/1873-3468.14040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been considered as a potential target for development of anticancer therapeutics. Here, we report a novel mechanism by which the cyclopentenone prostaglandin, 15-deoxy-Δ12,14 -prostaglandin J2 (15d-PGJ2 ) functions as an allosteric inhibitor of STAT3. 15d-PGJ2 inhibits phosphorylation, dimerization, nuclear translocation, and transcriptional activity of STAT3 in H-Ras-transformed human mammary epithelial cells (MCF10A-Ras) through the Michael addition reaction at cysteine 259 of STAT3. Comparative studies with 15d-PGJ2 analogues reveal that both C12-C13 and C9-C10 double bonds conjugated to the carbonyl group in the cyclopentenone ring of 15d-PGJ2 are essential for STAT3 binding. Antiproliferative and pro-apoptotic activities of 15d-PGJ2 in MCF10A-Ras cells are attributable to covalent modification of STAT3 on Cys259, and mimic the effects induced by mutation of this amino acid.
Collapse
Affiliation(s)
- Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Korea
| | - Nam-Chul Cho
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Korea
| | - Bitnara Han
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea
| | - Kyeojin Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Korea
| | - Young-Il Hahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
| | - Young Ger Suh
- College of Pharmacy, CHA University, Gyeonggi-do, Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungbuk, Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Cancer Research Institute, Seoul National University, Korea
| |
Collapse
|
8
|
Kim SJ, Saeidi S, Cho NC, Kim SH, Lee HB, Han W, Noh DY, Surh YJ. Interaction of Nrf2 with dimeric STAT3 induces IL-23 expression: Implications for breast cancer progression. Cancer Lett 2020; 500:147-160. [PMID: 33278500 DOI: 10.1016/j.canlet.2020.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 12/19/2022]
Abstract
Persistent activation of STAT3 and Nrf2 is considered to stimulate the aggressive behavior of basal-like breast cancer (BLBC). However, the precise mechanism underlying sustained overactivation of these transcription factors and their roles in breast cancer progression remain elusive. Analysis of the TCGA multi-omics data showed that high levels of STAT3 and Nrf2 mRNA were correlated with elevated expression of P-STAT3Y705 and Nrf2 target proteins in breast cancer patients. Our present study demonstrates a unique interaction between Nrf2 and STAT3 in the maintenance and progression of BLBC. RNA sequencing analysis identified the gene encoding IL-23A upregulated by concurrent binding of STAT3 and Nrf2 to its promoter. IL-23A depletion also showed the similar phenotypic changes to those caused by double knockdown of both transcription factors. In conclusion, the STAT3-Nrf2 interaction accelerates BLBC growth and progression by augmenting IL-23A expression, which underscores the importance of subtype-specific molecular pathways in human breast cancer.
Collapse
Affiliation(s)
- Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Soma Saeidi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Nam-Chul Cho
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Seung Hyeon Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, 03087, South Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, 03087, South Korea
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea; Department of Surgery, Seoul National University College of Medicine, Seoul, 03087, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|