1
|
Wang H, Cai J. Quantitative MRI in Childhood Neuroblastoma: Beyond the Assessment of Image-defined Risk Factors. Radiol Imaging Cancer 2024; 6:e240089. [PMID: 39485111 PMCID: PMC11615636 DOI: 10.1148/rycan.240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Neuroblastoma commonly occurs in children. MRI is a radiation-free imaging modality and has played an important role in identifying image-defined risk factors of neuroblastoma, providing necessary guidance for surgical resection and treatment response evaluation. However, image-defined risk factors are limited to providing structural information about neuroblastoma. With the evolution of MRI technologies, quantitative MRI can not only help assess image-defined risk factors but can also quantitatively reflect the biologic features of neuroblastoma in a noninvasive manner. Therefore, compared with anatomic imaging, these emerging quantitative MRI technologies are expected to provide more imaging biomarkers for the management of neuroblastoma. This review article discusses the current applications of quantitative MRI technologies in evaluating childhood neuroblastoma. Keywords: Pediatrics, MR-Functional Imaging, Children, MRI, Neuroblastoma, Quantitative Imaging © RSNA, 2024.
Collapse
Affiliation(s)
- Haoru Wang
- From the Department of Radiology, Children’s Hospital of
Chongqing Medical University, National Clinical Research Center for Child Health
and Disorders, Ministry of Education Key Laboratory of Child Development and
Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive
Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014,
China
| | - Jinhua Cai
- From the Department of Radiology, Children’s Hospital of
Chongqing Medical University, National Clinical Research Center for Child Health
and Disorders, Ministry of Education Key Laboratory of Child Development and
Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive
Disorders, No. 136 Zhongshan Road 2, Yuzhong District, Chongqing 400014,
China
| |
Collapse
|
2
|
Oka H, Nakau K, Nakagawa S, Imanishi R, Shimada S, Mikami Y, Fukao K, Iwata K, Takahashi S. Liver T1/T2 values with cardiac MRI during respiration. Cardiol Young 2023; 33:1859-1865. [PMID: 36281881 DOI: 10.1017/s1047951122003274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Assessing the hepatic status of children with CHD is very important in the post-operative period. This study aimed to assess the usefulness of paediatric liver T1/T2 values and to evaluate the impact of respiration on liver T1/T2 values. METHODS Liver T1/T2 values were evaluated in 69 individuals who underwent cardiac MRI. The mean age of the participants was 16.2 ± 9.8 years. Two types of imaging with different breathing methods were possible in 34 participants for liver T1 values and 10 participants for liver T2 values. RESULTS The normal range was set at 620-830 msec for liver T1 and 25-40 ms for liver T2 based on the data obtained from 17 healthy individuals. The liver T1/T2 values were not significantly different between breath-hold and free-breath imaging (T1: 769.4 ± 102.8 ms versus 763.2 ± 93.9 ms; p = 0.148, T2: 34.9 ± 4.0 ms versus 33.6 ± 2.4 ms; p = 0.169). Higher liver T1 values were observed in patients who had undergone Fontan operation, tetralogy of Fallot operation, or those with chronic viral hepatitis. There was a trend toward correlation between liver T1 values and liver stiffness (R = 0.65, p = 0.0004); and the liver T1 values showed a positive correlation with the shear wave velocity (R = 0.62, p = 0.0006). CONCLUSIONS Liver T1/T2 values were not affected by breathing patterns. Because liver T1 values tend to increase with right heart overload, evaluation of liver T1 values during routine cardiac MRI may enable early detection of future complications.
Collapse
Affiliation(s)
- Hideharu Oka
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Kouichi Nakau
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Sadahiro Nakagawa
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Rina Imanishi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Sorachi Shimada
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Yuki Mikami
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Kazunori Fukao
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Kunihiro Iwata
- Section of Radiological Technology, Department of Medical Technology, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
3
|
Cheng Z, Qin H, Cao W, He H, Zhang S, Yang Y, Wang Z, Zou X, Wang L, Huang X, Zhou S, Zhang S. Intravoxel incoherent motion imaging used to assess tumor microvascular changes after transarterial chemoembolization in a rabbit VX2 liver tumor model. Front Oncol 2023; 13:1114406. [PMID: 36925931 PMCID: PMC10011620 DOI: 10.3389/fonc.2023.1114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose To evaluate the correlation between microvascular density (MVD) and intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) parameters and the effect of glycolytic flux after transarterial chemoembolization (TACE) in a rabbit VX2 liver tumor. Materials and methods VX2 liver tumor allografts in 15 New Zealand white rabbits were treated with sterile saline (control group, n = 5) or lipiodol-doxorubicin emulsion (experimental group, n = 10). MRI was performed 2 weeks after the procedure to evaluate IVIM parameters, including apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF). All animal samples were taken of the tumor and surrounding liver. Immunostaining for CD31, CD34, CD105, and VEGF was used to evaluate MVD. The protein expression of Glut4, HK2, PKM2, LDHA, and MCT1 was determined using western blotting. Pearson correlation tests were used to analyze the relationship between MVD and IVIM parameters. Results D* value in the peritumoral region was negatively correlated with CD34 (r = -0.71, P = 0.01). PF value positively correlated with CD34 (r = 0.68, P = 0.015), CD105 (r = 0.76, P = 0.004) and VEGF (r = 0.72, P = 0.008) in the peritumoral region. Glut4, HK2, PKM2, and MCT1 in the peritumoral regions were higher in the experimental group than in the control group (all P < 0.05). Conclusion IVIM parameters were correlated with MVD in the intratumoral and peritumoral regions after TACE in a rabbit liver tumor model. The angiogenesis reflected by MVD may be related to changes of glycolytic flux.
Collapse
Affiliation(s)
- Zhimei Cheng
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
| | - Huanrong Qin
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
| | - Wei Cao
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Huizhou He
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
| | - Shuling Zhang
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenmin Wang
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xun Zou
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lizhou Wang
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
| | - Xueqing Huang
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
| | - Shi Zhou
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
| | - Shuai Zhang
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, China Branch of National Clinical Research Center for Interventional Medicine, Guiyang, China
| |
Collapse
|
4
|
Kurz FT, Schlemmer HP. Imaging in translational cancer research. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0677. [PMID: 36476372 PMCID: PMC9724222 DOI: 10.20892/j.issn.2095-3941.2022.0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
This review is aimed at presenting some of the recent developments in translational cancer imaging research, with a focus on novel, recently established, or soon to be established cross-sectional imaging techniques for computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET) imaging, including computational investigations based on machine-learning techniques.
Collapse
Affiliation(s)
- Felix T. Kurz
- Department of Radiology, German Cancer Research Center, Heidelberg 69120, Germany
| | | |
Collapse
|
5
|
Gerwing M, Hoffmann E, Kronenberg K, Hansen U, Masthoff M, Helfen A, Geyer C, Wachsmuth L, Höltke C, Maus B, Hoerr V, Krähling T, Hiddeßen L, Heindel W, Karst U, Kimm MA, Schinner R, Eisenblätter M, Faber C, Wildgruber M. Multiparametric MRI enables for differentiation of different degrees of malignancy in two murine models of breast cancer. Front Oncol 2022; 12:1000036. [PMID: 36408159 PMCID: PMC9667047 DOI: 10.3389/fonc.2022.1000036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Objective The objective of this study was to non-invasively differentiate the degree of malignancy in two murine breast cancer models based on identification of distinct tissue characteristics in a metastatic and non-metastatic tumor model using a multiparametric Magnetic Resonance Imaging (MRI) approach. Methods The highly metastatic 4T1 breast cancer model was compared to the non-metastatic 67NR model. Imaging was conducted on a 9.4 T small animal MRI. The protocol was used to characterize tumors regarding their structural composition, including heterogeneity, intratumoral edema and hemorrhage, as well as endothelial permeability using apparent diffusion coefficient (ADC), T1/T2 mapping and dynamic contrast-enhanced (DCE) imaging. Mice were assessed on either day three, six or nine, with an i.v. injection of the albumin-binding contrast agent gadofosveset. Ex vivo validation of the results was performed with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), histology, immunhistochemistry and electron microscopy. Results Significant differences in tumor composition were observed over time and between 4T1 and 67NR tumors. 4T1 tumors showed distorted blood vessels with a thin endothelial layer, resulting in a slower increase in signal intensity after injection of the contrast agent. Higher permeability was further reflected in higher Ktrans values, with consecutive retention of gadolinium in the tumor interstitium visible in MRI. 67NR tumors exhibited blood vessels with a thicker and more intact endothelial layer, resulting in higher peak enhancement, as well as higher maximum slope and area under the curve, but also a visible wash-out of the contrast agent and thus lower Ktrans values. A decreasing accumulation of gadolinium during tumor progression was also visible in both models in LA-ICP-MS. Tissue composition of 4T1 tumors was more heterogeneous, with intratumoral hemorrhage and necrosis and corresponding higher T1 and T2 relaxation times, while 67NR tumors mainly consisted of densely packed tumor cells. Histogram analysis of ADC showed higher values of mean ADC, histogram kurtosis, range and the 90th percentile (p90), as markers for the heterogenous structural composition of 4T1 tumors. Principal component analysis (PCA) discriminated well between the two tumor models. Conclusions Multiparametric MRI as presented in this study enables for the estimation of malignant potential in the two studied tumor models via the assessment of certain tumor features over time.
Collapse
Affiliation(s)
- Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- *Correspondence: Mirjam Gerwing,
| | - Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Katharina Kronenberg
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Anne Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Christiane Geyer
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Carsten Höltke
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Bastian Maus
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Verena Hoerr
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Heart Center Bonn, Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Tobias Krähling
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Lena Hiddeßen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Walter Heindel
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Melanie A. Kimm
- Department of Radiology, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Michel Eisenblätter
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Department of Diagnostic and Interventional Radiology, University of Freiburg, Freiburg, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany
- Translational Research Imaging Center, University of Münster, Münster, Germany
- Department of Radiology, University Hospital, Ludwig-Maximilian University, Munich, Germany
| |
Collapse
|
6
|
Baidya Kayal E, Sharma N, Sharma R, Bakhshi S, Kandasamy D, Mehndiratta A. T1 mapping as a surrogate marker of chemotherapy response evaluation in patients with osteosarcoma. Eur J Radiol 2022; 148:110170. [DOI: 10.1016/j.ejrad.2022.110170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/25/2022]
|
7
|
Quantification of contrast agent uptake in the hepatobiliary phase helps to differentiate hepatocellular carcinoma grade. Sci Rep 2021; 11:22991. [PMID: 34837039 PMCID: PMC8626433 DOI: 10.1038/s41598-021-02499-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to assess the degree of differentiation of hepatocellular carcinoma (HCC) using Gd-EOB-DTPA-assisted magnetic resonance imaging (MRI) with T1 relaxometry. Thirty-three solitary HCC lesions were included in this retrospective study. This study's inclusion criteria were preoperative Gd-EOB-DTPA-assisted MRI of the liver and a histopathological evaluation after hepatic tumor resection. T1 maps of the liver were evaluated to determine the T1 relaxation time and reduction rate between the native phase and hepatobiliary phase (HBP) in liver lesions. These findings were correlated with the histopathologically determined degree of HCC differentiation (G1, well-differentiated; G2, moderately differentiated; G3, poorly differentiated). There was no significant difference between well-differentiated (950.2 ± 140.2 ms) and moderately/poorly differentiated (1009.4 ± 202.0 ms) HCCs in the native T1 maps. After contrast medium administration, a significant difference (p ≤ 0.001) in the mean T1 relaxation time in the HBP was found between well-differentiated (555.4 ± 140.2 ms) and moderately/poorly differentiated (750.9 ± 146.4 ms) HCCs. For well-differentiated HCCs, the reduction rate in the T1 time was significantly higher at 0.40 ± 0.15 than for moderately/poorly differentiated HCCs (0.25 ± 0.07; p = 0.006). In conclusion this study suggests that the uptake of Gd-EOB-DTPA in HCCs is correlated with tumor grade. Thus, Gd-EOB-DTPA-assisted T1 relaxometry can help to further differentiation of HCC.
Collapse
|
8
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|