1
|
Lin HY, Chu PY. Mitochondrial calcium uniporter as biomarker and therapeutic target for breast cancer: Prognostication, immune microenvironment, epigenetic regulation and precision medicine. J Adv Res 2025; 70:445-461. [PMID: 38663838 PMCID: PMC11976406 DOI: 10.1016/j.jare.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Mitochondrial calcium uniporter (MCU) is a central subunit of MCU complex that regulate the levels of calcium ions within mitochondria. A comprehensive understanding the implications of MCU in clinical prognostication, biological understandings and therapeutic opportunity of breast cancer (BC) is yet to be determined. OBJECTIVES This study aims to investigate the role of MCU in predictive performance, tumor progression, epigenetic regulation, shaping of tumor immune microenvironment, and pharmacogenetics and the development of anti-tumor therapy for BC. METHODS The downloaded TCGA datasets were used to identify predictive ability of MCU expressions via supervised learning principle. Functional enrichment, mutation landscape, immunological profile, drug sensitivity were examined using bioinformatics analysis and confirmed by experiments exploiting human specimens, in vitro and in vivo models. RESULTS MCU copy numbers increase with MCU gene expression. MCU expression, but not MCU genetic alterations, had a positive correlation with known BC prognostic markers. Higher MCU levels in BC showed modest efficacy in predicting overall survival. In addition, high MCU expression was associated with known BC prognostic markers and with malignancy. In BC tumor and sgRNA-treated cell lines, enrichment pathways identified the involvement of cell cycle and immunity. miR-29a was recognized as a negative epigenetic regulator of MCU. High MCU levels were associated with increased mutation levels in oncogene TP53 and tumor suppression gene CDH1, as well as with an immunosuppressive microenvironment. Sigle-cell sequencing indicated that MCU mostly mapped on to tumor cell and CD8 T-cells. Inter-databases verification further confirmed the aforementioned observation. miR-29a-mediated knockdown of MCU resulted in tumor suppression and mitochondrial dysfunction, as well as diminished metastasis. Furthermore, MCU present pharmacogenetic significance in cellular docetaxel sensitivity and in prediction of patients' response to chemotherapeutic regimen. CONCLUSION MCU shows significant implication in prognosis, outcome prediction, microenvironmental shaping and precision medicine for BC. miR-29a-mediated MCU inhibition exerts therapeutic effect in tumor growth and metastasis.
Collapse
Affiliation(s)
- Hung-Yu Lin
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
2
|
Marsh NM, MacEwen MJS, Chea J, Kenerson HL, Kwong AA, Locke TM, Miralles FJ, Sapre T, Gozali N, Hart ML, Bammler TK, MacDonald JW, Sullivan LB, Atilla-Gokcumen GE, Ong SE, Scott JD, Yeung RS, Sancak Y. Mitochondrial Calcium Signaling Regulates Branched-Chain Amino Acid Catabolism in Fibrolamellar Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596106. [PMID: 38853984 PMCID: PMC11160645 DOI: 10.1101/2024.05.27.596106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Metabolic adaptations in response to changes in energy supply and demand are essential for survival. The mitochondrial calcium uniporter plays a key role in coordinating metabolic homeostasis by regulating TCA cycle activation, mitochondrial fatty acid oxidation, and cellular calcium signaling. However, a comprehensive analysis of uniporter-regulated mitochondrial pathways has remained unexplored. Here, we investigate metabolic consequences of uniporter loss- and gain-of-function using uniporter knockout cells and the liver cancer fibrolamellar carcinoma (FLC), which we demonstrate to have elevated mitochondrial calcium levels. Our results reveal that branched-chain amino acid (BCAA) catabolism and the urea cycle are uniporter-regulated metabolic pathways. Reduced uniporter function boosts expression of BCAA catabolism genes, and the urea cycle enzyme ornithine transcarbamylase (OTC). In contrast, high uniporter activity in FLC suppresses their expression. This suppression is mediated by reduced expression of the transcription factor KLF15, a master regulator of liver metabolism. Thus, uniporter responsive calcium signaling plays a central role in FLC-associated metabolic changes, including hyperammonemia. Our study identifies an important role for mitochondrial calcium signaling in metabolic adaptation through transcriptional regulation of metabolism and elucidates its importance for BCAA and ammonia metabolism in FLC.
Collapse
Affiliation(s)
- Nicole M Marsh
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Melissa J S MacEwen
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jane Chea
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Heidi L Kenerson
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Albert A Kwong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Timothy M Locke
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | | | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Natasha Gozali
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Madeleine L Hart
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, WA, Seattle, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington Medical Center, Seattle, WA, United States
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Li S, Chen F, Liu M, Zhang Y, Xu J, Li X, Shang Z, Huang S, Song S, Tu C. Knockdown of hepatic mitochondrial calcium uniporter mitigates MASH and fibrosis in mice. Cell Biosci 2024; 14:135. [PMID: 39523398 PMCID: PMC11550531 DOI: 10.1186/s13578-024-01315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Mitochondrial calcium uniporter (MCU) plays pleiotropic roles in cellular physiology and pathology that contributes to a variety of diseases, but the role and potential mechanism of MCU in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) remain poorly understood. METHODS AND RESULTS Here, hepatic knockdown of MCU in C57BL/6J mice was achieved by tail vein injection of AAV8-mediated the CRISPR/Cas9. Mice were fed a Choline-deficient, L-amino acid-defined high-fat diet (CDAHFD) for 8 weeks to induce MASH and fibrosis. We find that expression of MCU enhanced in MASH livers of humans and mice. MCU knockdown robustly limits lipid droplet accumulation, steatosis, inflammation, and hepatocyte apoptotic death during MASH development both in vivo in mice and in vitro in cellular models. MCU-deficient mice strikingly mitigate MASH-related fibrosis. Moreover, the protective effects of MCU knockdown against MASH progression are accompanied by a reduced level of mitochondrial calcium, limiting hepatic oxidative stress, and attenuating mitochondrial dysfunction. Mechanically, RNA sequencing analysis and protein immunoblotting indicate that knockdown MCU inhibited the Hippo/YAP pathway activation and restored the AMP-activated protein kinase (AMPK) activity during MASH development both in vitro and in vivo. CONCLUSIONS MCU is up-regulated in MASH livers in humans and mice; and hepatic MCU knockdown protects against diet-induced MASH and fibrosis in mice. Thus, targeting MCU may represent a novel therapeutic strategy for MASH and fibrosis.
Collapse
Affiliation(s)
- Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fangyuan Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Min Liu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yajun Zhang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jingjing Xu
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiyin Shang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Shaoping Huang
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Chuantao Tu
- Department of Gastroenterology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
4
|
Colussi DM, Stathopulos PB. The mitochondrial calcium uniporter: Balancing tumourigenic and anti-tumourigenic responses. J Physiol 2024; 602:3315-3339. [PMID: 38857425 DOI: 10.1113/jp285515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Increased malignancy and poor treatability associated with solid tumour cancers have commonly been attributed to mitochondrial calcium (Ca2+) dysregulation. The mitochondrial Ca2+ uniporter complex (mtCU) is the predominant mode of Ca2+ uptake into the mitochondrial matrix. The main components of mtCU are the pore-forming mitochondrial Ca2+ uniporter (MCU) subunit, MCU dominant-negative beta (MCUb) subunit, essential MCU regulator (EMRE) and the gatekeeping mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2) proteins. In this review, we describe mtCU-mediated mitochondrial Ca2+ dysregulation in solid tumour cancer types, finding enhanced mtCU activity observed in colorectal cancer, breast cancer, oral squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma and embryonal rhabdomyosarcoma. By contrast, decreased mtCU activity is associated with melanoma, whereas the nature of mtCU dysregulation remains unclear in glioblastoma. Furthermore, we show that numerous polymorphisms associated with cancer may alter phosphorylation sites on the pore forming MCU and MCUb subunits, which cluster at interfaces with EMRE. We highlight downstream/upstream biomolecular modulators of MCU and MCUb that alter mtCU-mediated mitochondrial Ca2+ uptake and may be used as biomarkers or to aid in the development of novel cancer therapeutics. Additionally, we provide an overview of the current small molecule inhibitors of mtCU that interact with the Asp residue of the critical Asp-Ile-Met-Glu motif or through other allosteric regulatory mechanisms to block Ca2+ permeation. Finally, we describe the relationship between MCU- and MCUb-mediating microRNAs and mitochondrial Ca2+ uptake that should be considered in the discovery of new treatment approaches for cancer.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Tzeng YDT, Chu PY, Yong SB, Hsu TS, Tseng LM, Hou MF, Sheu JJC, Hsiao JH, Li CJ. Multi-omic profiling of breast tumor microenvironment uncovers a role of mitochondrial calcium gatekeepers. J Cancer 2024; 15:3663-3674. [PMID: 38911376 PMCID: PMC11190767 DOI: 10.7150/jca.95979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
In this study, we aimed to elucidate the role of mitochondrial calcium uptake 1/2 (MiCU1/2) in breast cancer (BRCA) by employing a comprehensive multi-omics approach. Unlike previous research, we utilized a novel web application tailored for whole tumor tissue, single-cell, and spatial transcriptomics analysis to investigate the association between MiCU1/2 and the tumor immune microenvironment (TIME). Our gene set enrichment analysis (GSEA) provided insights into the primary biological effects of MiCU1/2, while our CRISPR-based drug screening repository identified potential effective drugs. Our study revealed that high MiCU1/2 expression serves as an independent diagnostic biomarker, correlating with advanced clinical status and indicating poorer recurrence-free survival (RFS) rates in BRCA patients. Additionally, spatial transcriptome analysis highlighted the heightened expression of MiCU1/2 in tumors and its relevance in surrounding immune cells. Furthermore, using the CIBERSORT algorithm, we discovered a positive correlation between MiCU1/2 levels and macrophage infiltration, underscoring their potential impact on immune infiltration. We also identified expression patterns of immune-related genes associated with responses against various immune cell types, including CXCL, MIF, GDF, SPP1, and IL16. Finally, our pharmacogenomic screening identified potential small molecule drugs capable of effectively targeting breast cancer cells with elevated MiCU1/2 expression. Overall, our study establishes MiCU1/2 as a promising novel biomarker for BRCA diagnosis and prognostic prediction, as well as a potential therapeutic target, highlighting the importance of exploring these pathways to advance patient care and outcomes in BRCA treatment.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Su-Boon Yong
- Department of Allergy and Immunology, China Medical University Children's Hospital, Taichung 404, Taiwan
- Research Center for Allergy, Immunology, and Microbiome, China Medical University Hospital, Taichung 404, Taiwan
| | - Tzu-Sheng Hsu
- Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung 802, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
6
|
Li CJ, Tzeng YDT, Hsiao JH, Tseng LM, Hsu TS, Chu PY. Spatial and single-cell explorations uncover prognostic significance and immunological functions of mitochondrial calcium uniporter in breast cancer. Cancer Cell Int 2024; 24:140. [PMID: 38632642 PMCID: PMC11022417 DOI: 10.1186/s12935-024-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
The mitochondrial calcium uniporter (MCU) is a transmembrane protein facilitating the entry of calcium ions into mitochondria from the cell cytosol. Maintaining calcium balance is crucial for enhancing cellular energy supply and regulating cell death. The interplay of calcium balance through MCU and the sodium-calcium exchanger is known, but its regulation in the breast cancer tumor microenvironment remains elusive. Further investigations are warranted to explore MCU's potential in BRCA clinical pathology, tumor immune microenvironment, and precision oncology. Our study, employing a multi-omics approach, identifies MCU as an independent diagnostic biomarker for breast cancer (BRCA), correlated with advanced clinical status and poor overall survival. Utilizing public datasets from GEO and TCGA, we discern differentially expressed genes in BRCA and examine their associations with immune gene expression, overall survival, tumor stage, gene mutation status, and infiltrating immune cells. Spatial transcriptomics is employed to investigate MCU gene expression in various regions of BRCA, while spatial transcriptomics and single-cell RNA-sequencing methods explore the correlation between MCUs and immune cells. Our findings are validated through the analysis of 59 BRCA patient samples, utilizing immunohistochemistry and bioinformatics to examine the relationship between MCU expression, clinicopathological features, and prognosis. The study uncovers the expression of key gene regulators in BRCA associated with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators positively correlate with different immune cells in six immune datasets, playing a pivotal role in immune cell infiltration in BRCA. Notably, high MCU performance is linked to CD8 + T cells infiltration in BRCA. Furthermore, pharmacogenomic analysis of BRCA cell lines indicates that MCU inactivation is associated with increased sensitivity to specific small molecule drugs. Our findings suggest that MCU alterations may be linked to BRCA progression, unveiling new diagnostic and prognostic implications for MCU in BRCA. The study underscores MCU's role in the tumor immune microenvironment and cell cycle progression, positioning it as a potential tool for BRCA precision medicine and drug screening.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung, 802, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Tzu-Sheng Hsu
- Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua, 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
7
|
Chang R, Tsui KH, Pan LF, Li CJ. Spatial and single-cell analyses uncover links between ALKBH1 and tumor-associated macrophages in gastric cancer. Cancer Cell Int 2024; 24:57. [PMID: 38317214 PMCID: PMC10845659 DOI: 10.1186/s12935-024-03232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND AlkB homolog 1, histone H2A dioxygenase (ALKBH1), a crucial enzyme involved in RNA demethylation in humans, plays a significant role in various cellular processes. While its role in tumor progression is well-established, its specific contribution to stomach adenocarcinoma (STAD) remains elusive. This study seeks to explore the clinical and pathological relevance of ALKBH1, its impact on the tumor immune microenvironment, and its potential for precision oncology in STAD. METHODS We adopted a comprehensive multi-omics approach to identify ALKBH1 as an potential diagnostic biomarker for STAD, demonstrating its association with advanced clinical stages and reduced overall survival rates. Our analysis involved the utilization of publicly available datasets from GEO and TCGA. We identified differentially expressed genes in STAD and scrutinized their relationships with immune gene expression, overall survival, tumor stage, gene mutation profiles, and infiltrating immune cells. Moreover, we employed spatial transcriptomics to investigate ALKBH1 expression across distinct regions of STAD. Additionally, we conducted spatial transcriptomic and single-cell RNA-sequencing analyses to elucidate the correlation between ALKBH1 expression and immune cell populations. Our findings were validated through immunohistochemistry and bioinformatics on 60 STAD patient samples. RESULTS Our study unveiled crucial gene regulators in STAD linked with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators demonstrated a positive association with distinct immune cell populations across six immune datasets, exerting a substantial influence on immune cell infiltration in STAD. Furthermore, we established a connection between elevated ALKBH1 expression and macrophage infiltration in STAD. Pharmacogenomic analysis of gastric cancer cell lines further indicated that ALKBH1 inactivation correlated with heightened sensitivity to specific small-molecule drugs. CONCLUSION In conclusion, our study highlights the potential role of ALKBH1 alterations in the advancement of STAD, shedding light on novel diagnostic and prognostic applications of ALKBH1 in this context. We underscore the significance of ALKBH1 within the tumor immune microenvironment, suggesting its utility as a precision medicine tool and for drug screening in the management of STAD.
Collapse
Affiliation(s)
- Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Li-Fei Pan
- Department of General Affair Office, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Xiao H, Ma L, Ding J, Wang H, Bi X, Tan F, Piao W. Mitochondrial Calcium Uniporter (MCU) that Modulates Mitochondrial Calcium Uptake and Facilitates Endometrial Cancer Progression through Interaction with VDAC1. Curr Cancer Drug Targets 2024; 24:354-367. [PMID: 37702230 DOI: 10.2174/1568009624666230912095526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Although endometrial cancer represents a frequently diagnosed malignancy of the female reproductive tract, we know very little about the factors that control endometrial cancer. OBJECTIVE Our study was presented to investigate the function of MCU in endometrial tumorigenesis and the molecular mechanisms involved. MATERIALS AND METHODS A total of 94 endometrial cancer patients were recruited into our cohort. MCU and VDAC1 expression was examined in tumor and normal tissues via immunohistochemistry and immunofluorescence. Associations of MCU and VDAC1 expression with clinicopathological characteristics were evaluated. After transfection with shRNA targeting MCU or full-length MCU plasmids, clone formation, wound healing, transwell and MitoTracker Red staining were separately presented in Ishikawa and RL95-2 cells. Moreover, Western blotting or immunofluorescence was utilized to examine the expression of MCU, VDAC1, Na+/Ca2+/Li+ exchanger (NCLX), and β-catenin under VDAC1 knockdown and/or MCU overexpression or knockdown. RESULTS MCU and VDAC1 expression were prominently up-regulated in endometrial cancer tissues and were significantly associated with histological grade, depth of myometrial invasion and lymph node status. MCU up-regulation enhanced clone formation, migration, and mitochondrial activity of endometrial cancer cells. The opposite results were investigated when MCU was silenced. MCU or VDAC1 silencing reduced the expression of MCU, VDAC1, NCLX, and β-catenin. Moreover, VDAC1 knockdown alleviated the promoting effect of MCU overexpression on the above proteins. CONCLUSION This investigation demonstrated that MCU-induced mitochondrial calcium uptake plays a critical role in endometrial tumorigenesis through interaction with VDAC1.
Collapse
Affiliation(s)
- Hongyan Xiao
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Lijun Ma
- School of Electrical and Information Engineering, Department of Medical Imaging, North Minzu University, Yinchuan, 750021, Ningxia Hui Autonomous Region, China
| | - Jie Ding
- Medical Imaging Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Honghong Wang
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Xiaofang Bi
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Fengmei Tan
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Wenhua Piao
- Clinical Medical Laboratory Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| |
Collapse
|
9
|
Wen CY, Hsiao JH, Tzeng YDT, Chang R, Tsang YL, Kuo CH, Li CJ. Single-cell landscape and spatial transcriptomic analysis reveals macrophage infiltration and glycolytic metabolism in kidney renal clear cell carcinoma. Aging (Albany NY) 2023; 15:11298-11312. [PMID: 37847178 PMCID: PMC10637799 DOI: 10.18632/aging.205128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The present study investigates the clinical relevance of glycolytic factors, specifically PGAM1, in the tumor microenvironment of kidney renal clear cell carcinoma (KIRC). Despite the established role of glycolytic metabolism in cancer pathophysiology, the prognostic implications and key targets in KIRC remain elusive. We analyzed GEO and TCGA datasets to identify DEGs in KIRC and studied their relationship with immune gene expression, survival, tumor stage, gene mutations, and infiltrating immune cells. We explored Pgam1 gene expression in different kidney regions using spatial transcriptomics after mouse kidney injury analysis. Single-cell RNA-sequencing was used to assess the association of PGAM1 with immune cells. Findings were validated with tumor specimens from 60 KIRC patients, correlating PGAM1 expression with clinicopathological features and prognosis using bioinformatics and immunohistochemistry. We demonstrated the expression of central gene regulators in renal cancer in relation to genetic variants, deletions, and tumor microenvironment. Mutations in these hub genes were positively associated with distinct immune cells in six different immune datasets and played a crucial role in immune cell infiltration in KIRC. Single-cell RNA-sequencing revealed that elevated PGAM1 was associated with immune cell infiltration, specifically macrophages. Furthermore, pharmacogenomic analysis of renal cancer cell lines indicated that inactivation of PGAM1 was associated with increased sensitivity to specific small-molecule drugs. Altered PGAM1 in KIRC is associated with disease progression and immune microenvironment. It has diagnostic and prognostic implications, indicating its potential in precision medicine and drug screening.
Collapse
Affiliation(s)
- Chen-Yueh Wen
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung 802, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 802, Taiwan
| | - Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, Münster 48149, Germany
| | - Chen-Hsin Kuo
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
10
|
García EF, Paudel U, Noji MC, Bowman CE, Pitarresi JR, Rustgi AK, Wellen KE, Arany Z, Weissenrieder JS, Foskett JK. The mitochondrial Ca 2+ channel MCU is critical for tumor growth by supporting cell cycle progression and proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538295. [PMID: 37163088 PMCID: PMC10168388 DOI: 10.1101/2023.04.26.538295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mitochondrial uniporter (MCU) Ca 2+ ion channel represents the primary means for Ca 2+ uptake into mitochondria. Here we employed in vitro and in vivo models with MCU genetically eliminated to understand how MCU contributes to tumor formation and progression. Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced mitochondrial Ca 2+ uptake, suppression of inactivating-phosphorylation of pyruvate dehydrogenase, a modest increase of basal mitochondrial respiration and a significant increase of acute Ca 2+ -dependent stimulation of mitochondrial respiration. Inhibition of mitochondrial Ca 2+ uptake by genetic deletion of MCU markedly inhibited growth of HEK293T cells and of transformed fibroblasts in mouse xenograft models. Reduced tumor growth was primarily a result of substantially reduced proliferation and fewer mitotic cells in vivo , and slower cell proliferation in vitro associated with delayed progression through S-phase of the cell cycle. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro , both predictors of metastatic potential. Surprisingly, mitochondrial matrix Ca 2+ concentration, membrane potential, global dehydrogenase activity, respiration and ROS production were unchanged by genetic deletion of MCU in transformed cells. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca 2+ signals. Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on mitochondrial Ca 2+ uptake for cell metabolism and Ca 2+ dynamics necessary for cell-cycle progression and cell proliferation.
Collapse
|
11
|
Tang Y, Li K, Hu B, Cai Z, Li J, Tao H, Cao J. Fatty acid binding protein 5 promotes the proliferation, migration, and invasion of hepatocellular carcinoma cells by degradation of Krüppel-like factor 9 mediated by miR-889-5p via cAMP-response element binding protein. Cancer Biol Ther 2022; 23:424-438. [PMID: 35816613 PMCID: PMC9275499 DOI: 10.1080/15384047.2022.2094670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mounting evidence has demonstrated that fatty acid binding protein 5 (FABP5) is commonly upregulated in many human malignancies. However, the mechanisms explaining the involvement of FABP5 in hepatocellular carcinoma (HCC) remain unclear. In this study, we demonstrated the involvement of FABP5 and its downstream signaling molecules in HCC progression. We first confirmed that FABP5 expression was upregulated in HCC. Additionally, FABP5 promoted HCC cells proliferation, migration, and invasion. Mechanistic investigation showed that FABP5 could improve cAMP-response element binding protein (CREB) phosphorylation. Meanwhile, CREB, as a transcription factor, upregulated the miR-889-5p expression by binding to the miR-889-5p promoter region. Consequently, miR-889-5p led to downregulation of Krüppel-like factor 9 (KLF9) by binding to the 3ʹ-UTR of the KLF9 mRNA, potentiating the PI3K/AKT signaling pathway and promoting the proliferation, migration, and invasion of HCC cells. Our findings have identified a FABP5/CREB/miR-889-5p/KLF9 axis for HCC progression, and we postulate that blocking this key signaling pathway may represent a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Yanping Tang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Kezhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Bangli Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhengmin Cai
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jilin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Hao Tao
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ji Cao
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| |
Collapse
|
12
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
13
|
Li CJ, Chang CH, Tsang YL, Fang SH, Chen SN, Chiang AJ. Prognostic significance of ferroptosis pathway gene signature and correlation with macrophage infiltration in cervical squamous cell carcinoma. Int Immunopharmacol 2022; 112:109273. [PMID: 36183678 DOI: 10.1016/j.intimp.2022.109273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (NFE2L2) plays a critical role in ferroptosis and biogenesis, however, its role in cervical squamous cell carcinoma (CESC) remains unknown. Therefore, in this study, we aimed to determine the role of NFE2L2 in CESC using multiomic analysis. METHODS All raw data were downloaded from The Cancer Genome Atlas (TCGA) and further validated in our dataset. NFE2L2 mRNA expression and methylation data on CESC were examined using the Tumor Immune Estimation Resource (TIMER) and University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) database resources. NFE2L2 expression was examined in paraffin-embedded tissues from our cohort of 240 samples each of cancerous and non-cancerous tissues. Further, cervical cancer biopsies were genetically validated. TIMER and Tumor-Immune System Interactions Database (TISIDB) were used to analyze the correlation between NFE2L2 and cluster of differentiation 163 (CD163) with co-expressed genes in tumor-infiltrating immune cells. RESULTS The mRNA and protein levels of NFE2L2 were lower in CESC tissues than they were in adjacent tissues. Importantly, a low NFE2L2 level correlated with poor prognosis in CESC patients. NFE2L2 was specifically expressed in tumor macrophages and correlated with the tumor immune landscape and poor prognosis in the cohort data. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analysis showed that co-expressed genes are mainly associated with multiple immune-related pathways. Furthermore, our data analysis revealed that NFE2L2 and macrophage CD163 expression levels were negatively correlated. Interestingly, we discovered multiple NFE2L2 binding sites in promoters of CD163. CONCLUSION This study confirmed the novel pyroptosis landscape in CESC, provided a role for NFE2L2 in the tumor microenvironment, and identified prognostic biomarkers for CESC and related immune infiltration.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chiung-Hung Chang
- Department of Traditional Chinese Medicine, Tainan Municipal Hospital, Tainan 701, Taiwan
| | - Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, Münster, Germany
| | - Shao-Hsuan Fang
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - San-Nung Chen
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - An-Jen Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
14
|
Zhang L, Qi J, Zhang X, Zhao X, An P, Luo Y, Luo J. The Regulatory Roles of Mitochondrial Calcium and the Mitochondrial Calcium Uniporter in Tumor Cells. Int J Mol Sci 2022; 23:6667. [PMID: 35743109 PMCID: PMC9223557 DOI: 10.3390/ijms23126667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca2+ is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca2+ participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca2+ through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca2+ in both mitochondria and cytoplasm, thereby regulating cellular Ca2+ homeostasis. Mitochondrial Ca2+ transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca2+ homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca2+ and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca2+ regulation helps diagnosis and therapy.
Collapse
Affiliation(s)
- Linlin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xiya Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| |
Collapse
|
15
|
Chiu HY, Loh AHP, Taneja R. Mitochondrial calcium uptake regulates tumour progression in embryonal rhabdomyosarcoma. Cell Death Dis 2022; 13:419. [PMID: 35490194 PMCID: PMC9056521 DOI: 10.1038/s41419-022-04835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
AbstractEmbryonal rhabdomyosarcoma (ERMS) is characterised by a failure of cells to complete skeletal muscle differentiation. Although ERMS cells are vulnerable to oxidative stress, the relevance of mitochondrial calcium homoeostasis in oncogenesis is unclear. Here, we show that ERMS cell lines as well as primary tumours exhibit elevated expression of the mitochondrial calcium uniporter (MCU). MCU knockdown resulted in impaired mitochondrial calcium uptake and a reduction in mitochondrial reactive oxygen species (mROS) levels. Phenotypically, MCU knockdown cells exhibited reduced cellular proliferation and motility, with an increased propensity to differentiate in vitro and in vivo. RNA-sequencing of MCU knockdown cells revealed a significant reduction in genes involved in TGFβ signalling that play prominent roles in oncogenesis and inhibition of myogenic differentiation. Interestingly, modulation of mROS production impacted TGFβ signalling. Our study elucidates mechanisms by which mitochondrial calcium dysregulation promotes tumour progression and suggests that targeting the MCU complex to restore mitochondrial calcium homoeostasis could be a therapeutic avenue in ERMS.
Collapse
|
16
|
Chu PY, Tzeng YDT, Tsui KH, Chu CY, Li CJ. Downregulation of ATP binding cassette subfamily a member 10 acts as a prognostic factor associated with immune infiltration in breast cancer. Aging (Albany NY) 2022; 14:2252-2267. [PMID: 35247251 PMCID: PMC8954971 DOI: 10.18632/aging.203933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
The human ATP binding cassette (ABC) family of transporter proteins plays an important role in the maintenance of homeostasis in vivo. The aim of this study is to evaluate the potential diagnostic, prognostic, and therapeutic value of the ABCA10 gene in BRCA. We found that ABCA10 expression was downregulated in different subgroups of breast cancer and strongly correlated with pathological stage in BRCA patients. Low expression of ABCA10 was associated with BRCA patients showing shorter overall survival (OS). ABCA10 expression may be regulated by promoter methylation, copy number variation (CNV) and kinase, and is associated with immune infiltration. Our study also demonstrated the potential role of ABCA10 modifications in tumor microenvironment (TME) cellular infiltration. Nevertheless, the regulatory mechanism remains unknown and immunotherapy is marginal in BRCA. We demonstrate the expression of different ABCA10 modulators in breast cancer associated with genetic variants, deletions, tumor mutation burden (TMB) and TME. Mutations in ABCA10 are positively associated with different immune cells in six different immune databases and play an important role in immune cell infiltration in breast cancer. Overall, this study provides evidence that ABCA10 could become the potential targets for precision treatment and new biomarkers in the prognosis of breast cancer.
Collapse
Affiliation(s)
- Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ching-Yu Chu
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
17
|
Hou YL, Li CJ, Lin LT, Chen SN, Wen ZH, Tsui KH. DHEA restores mitochondrial dynamics of cumulus cells by regulating PGAM5 expression in poor ovarian responders. Taiwan J Obstet Gynecol 2022; 61:223-229. [DOI: 10.1016/j.tjog.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 10/18/2022] Open
|
18
|
Chu PY, Tzeng YDT, Chiu YH, Lin HY, Kuo CH, Hou MF, Li CJ. Multi-Omics Reveals the Immunological Role and Prognostic Potential of Mitochondrial Ubiquitin Ligase MARCH5 in Human Breast Cancer. Biomedicines 2021; 9:1329. [PMID: 34680446 PMCID: PMC8533422 DOI: 10.3390/biomedicines9101329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023] Open
Abstract
E3 ubiquitin-linked enzyme MARCH5, also known as membrane-associated circular finger 5, is an enzyme encoded by the human MARCH5 gene. The main objective of this study was to visualize the prognosis of MARCH5 in breast cancer and to determine the relationship between MARCH5 expression and tumor immunity. MARCH5 expression was significantly higher in several cancers, including breast cancer (BRCA), compared with corresponding normal tissues. Not only was high MARCH5 expression associated with poorer overall survival, but also MARCH5 expression was positively correlated with the number of tumor-infiltrating immune cells in BRCA malignant tissues. Furthermore, MARCH5 expression showed a strong correlation with various immune markers of BRCA, suggesting its role in regulating tumor immunity. MARCH5 is a useful prognostic biomarker in several cancers, and its expression is highly correlated with tumor immune cell infiltration, and increased MARCH5 expression may serve as a new biomarker for BRCA diagnosis and prognosis.
Collapse
Affiliation(s)
- Pei-Yi Chu
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, Taipei 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 111, Taiwan;
| | - Hung-Yu Lin
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chen-Hsin Kuo
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan;
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
19
|
Mitochondrial Metabolic Signatures in Hepatocellular Carcinoma. Cells 2021; 10:cells10081901. [PMID: 34440674 PMCID: PMC8391498 DOI: 10.3390/cells10081901] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. HCC progression and metastasis are closely related to altered mitochondrial metabolism, including mitochondrial stress responses, metabolic reprogramming, and mitoribosomal defects. Mitochondrial oxidative phosphorylation (OXPHOS) defects and reactive oxygen species (ROS) production are attributed to mitochondrial dysfunction. In response to oxidative stress caused by increased ROS production, misfolded or unfolded proteins can accumulate in the mitochondrial matrix, leading to initiation of the mitochondrial unfolded protein response (UPRmt). The mitokines FGF21 and GDF15 are upregulated during UPRmt and their levels are positively correlated with liver cancer development, progression, and metastasis. In addition, mitoribosome biogenesis is important for the regulation of mitochondrial respiration, cell viability, and differentiation. Mitoribosomal defects cause OXPHOS impairment, mitochondrial dysfunction, and increased production of ROS, which are associated with HCC progression in mouse models and human HCC patients. In this paper, we focus on the role of mitochondrial metabolic signatures in the development and progression of HCC. Furthermore, we provide a comprehensive review of cell autonomous and cell non-autonomous mitochondrial stress responses during HCC progression and metastasis.
Collapse
|
20
|
Dehydroepiandrosterone Shifts Energy Metabolism to Increase Mitochondrial Biogenesis in Female Fertility with Advancing Age. Nutrients 2021; 13:nu13072449. [PMID: 34371958 PMCID: PMC8308577 DOI: 10.3390/nu13072449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Female reproductive aging is an irreversible process associated with a decrease in oocyte quality, which is a limiting factor for fertility. Previous studies have shown that dehydroepiandrosterone (DHEA) has been shown to improve in vitro fertilization (IVF) outcomes in older women. Herein, we showed that the decline in oocyte quality with age is accompanied by a significant decrease in the level of bioenergetic metabolism genes. We compared the clinical characteristics between groups of infertile women who either received DHEA or did not. Treatment with DHEA may enhance oocyte quality by improving energy production and metabolic reprogramming in cumulus cells (CCs) of aging women. Our results showed that compared with the group without DHEA, the group with DHEA produced a large number of day-three (D3) embryos, top-quality D3 embryos, and had improved ongoing pregnancy rate and clinical pregnancy rate. This may be because DHEA enhances the transport of oxidative phosphorylation and increases mitochondrial oxygen consumption in CCs, converting anaerobic to aerobic metabolism commonly used by aging cells to delay oocyte aging. In conclusion, our results suggest that the benefit of DHEA supplementation on IVF outcomes in aging cells is significant and that this effect may be mediated in part through the reprogramming of metabolic pathways and conversion of anaerobic to aerobic respiration.
Collapse
|
21
|
Li CJ, Chiu YH, Chang C, Chang YCI, Sheu JJC, Chiang AJ. Acetyl Coenzyme A Synthase 2 Acts as a Prognostic Biomarker Associated with Immune Infiltration in Cervical Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:3125. [PMID: 34206705 PMCID: PMC8269092 DOI: 10.3390/cancers13133125] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/29/2023] Open
Abstract
Cervical squamous cell carcinoma (CESC) is one of the most common malignant tumors in women worldwide with a low survival rate. Acetyl coenzyme A synthase 2 (ACSS2) is a conserved nucleosidase that converts acetate to acetyl-CoA for energy production. Our research intended to identify the correlations of ACSS2 with clinical prognosis and tumor immune infiltration in CESC. ACSS2 is highly expressed in many tumors and is involved in the progression and metastasis of these tumors. However, it is not clear how ACSS2 affects CESC progression and immune infiltration. Analysis of the cBioPortal, GEPIA2, UALCAN, and TCGA databases showed that ACSS2 transcript levels were significantly upregulated in multiple cancer types including CESC. Quantitative RT-PCR analysis confirmed that ACSS2 expression was significantly upregulated in human cervical cancer cells. Here, we performed tissue microarray analysis of paraffin-embedded tissues from 240 cervical cancer patients recorded at FIGO/TNM cancer staging. The results showed that ACSS2 and PDL1 were highly expressed in human CESC tissues, and its expression was associated with the clinical characteristics of CESC patients. TIMER database analysis showed that ACSS2 expression in CESC was associated with tumor infiltration of B cells, CD4+ and CD8+ T cells, and cancer-associated fibroblasts (CAF). Kaplan-Meier survival curve analysis showed that CESC with high ACSS2 expression was associated with shorter overall survival. Collectively, our findings establish ACSS2 as a potential diagnostic and prognostic biomarker for CESC.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 111, Taiwan;
| | - Chung Chang
- Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | | | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - An-Jen Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| |
Collapse
|
22
|
Identification of Novel Biomarkers and Candidate Drug in Ovarian Cancer. J Pers Med 2021; 11:jpm11040316. [PMID: 33921660 PMCID: PMC8073701 DOI: 10.3390/jpm11040316] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
This paper investigates the expression of the CREB1 gene in ovarian cancer (OV) by deeply excavating the gene information in the multiple databases and the mechanism thereof. In short, we found that the expression of the CREB1 gene in ovarian cancer tissue was significantly higher than that of normal ovarian tissue. Kaplan–Meier survival analysis showed that the overall survival was significantly shorter in patients with high expression of the CREB1 gene than those in patients with low expression of the CREB1 gene, and the prognosis of patients with low expression of the CREB1 gene was better. The CREB1 gene may play a role in the occurrence and development of ovarian cancer by regulating the process of protein. Based on differentially expressed genes, 20 small-molecule drugs that potentially target CREB1 with abnormal expression in OV were obtained from the CMap database. Among these compounds, we found that naloxone has the greatest therapeutic value for OV. The high expression of the CREB1 gene may be an indicator of poor prognosis in ovarian cancer patients. Targeting CREB1 may be a potential tool for the diagnosis and treatment of OV.
Collapse
|