1
|
Dowdall N, Hoare T. β-1,3 Glucan Microparticles & Nanoparticles: Fabrication Methods & Applications in Immunomodulation & Targeted Drug Delivery. Adv Healthc Mater 2025:e2501006. [PMID: 40302314 DOI: 10.1002/adhm.202501006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Innate immune cells such as macrophages and dendritic cells play major roles in the progression of many cancerous, fibrotic, and autoimmune diseases, often due to environmental cues that skew these cells toward a phenotype that progresses or exacerbates the disease state. As such, a growing focus in treating such diseases is placed on exploiting the high plasticity of these cells to modify or reverse their pro-disease phenotypes using immunomodulatory materials. β-1,3 glucans are one such type of material that has exhibited diverse immunomodulatory effects on immune cells, including the mitigation or reversal of the adverse effects of dysregulated immune cells. In this review, we outline various fabrication techniques to produce β-1,3 glucan-derived microparticles and nanoparticles and discuss the diverse particle properties that can be obtained by tuning glucan chemistry, fabrication method, and formulation components. Furthermore, the immunomodulatory applications of β-1,3 glucan particles are highlighted with a focus on immune cell targeting, modulation, and the delivery of small molecule and macromolecular therapeutics.
Collapse
Affiliation(s)
- Nate Dowdall
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
2
|
Ahmad F, Ahmad S, Srivastav AK, Upadhyay TK, Husain A, Khubaib M, Kang S, Park MN, Kim B, Sharma R. "β-glucan signalling stimulates NOX-2 dependent autophagy and LC-3 associated autophagy (LAP) pathway". Int J Biol Macromol 2024; 282:136520. [PMID: 39401634 DOI: 10.1016/j.ijbiomac.2024.136520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/19/2024]
Abstract
β-Glucan, a complex polysaccharide derived from fungal and yeast cell walls, plays a crucial role in modulating immune responses through their interaction with receptors such as Dectin-1 and Complement receptor 3 (CR-3). This review provides an in-depth analysis of the molecular mechanisms by which β-glucans activate receptor-mediated signalling pathways, focusing particularly on the LC3-associated phagocytosis (LAP) and autophagy pathways. Hence, we explore how β-glucan receptor engagement stimulates NADPH oxidase 2 (NOX-2), leading to the intracellular production of significant level of reactive oxygen species (ROS) essential for both conventional autophagy and LAP. While significant progress has been made in elucidation of downstream signaling by glucans, the regulation of phago-lysosomal maturation and antigen presentation during LAP induction still remains less explored. This review aims to provide a comprehensive overview of these pathways and their regulation by β-glucans. By consolidating the current knowledge, we seek to highlight how these mechanisms can be leveraged for therapeutic applications, particularly in the context of tuberculosis (TB) management, where β-glucans could serve as host-directed adjuvant therapies to combat drug-resistant strains. Despite major advancements in this field, currently key research gaps still persist, including detailed molecular interactions between β-glucan receptors and NOX-2 and the translation of these findings to in-vivo models and clinical investigations. This review underscores the need for further research to explore the therapeutic potential of β-glucans in managing not only tuberculosis but also other diseases such as cancer, cardiovascular conditions, and metabolic disorders.
Collapse
Affiliation(s)
- Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Physiological Sciences, Oklahoma Centre for Respiratory and Infectious Diseases, Oklahoma State University, OK 74074, United States of America
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, Uttar Pradesh, India
| | - Anurag Kumar Srivastav
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India
| | - Adil Husain
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das [BBD] College of Dental Sciences BBD University, Lucknow 226028, Uttar Pradesh, India
| | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| | - Rolee Sharma
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur 228024, Uttar Pradesh, India.
| |
Collapse
|
3
|
He L, Zhu Z, Qi C. β-Glucan-A promising immunocyte-targeting drug delivery vehicle: Superiority, applications and future prospects. Carbohydr Polym 2024; 339:122252. [PMID: 38823919 DOI: 10.1016/j.carbpol.2024.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Drug delivery technologies that could convert promising therapeutics into successful therapies have been under broad research for many years. Recently, β-glucans, natural-occurring polysaccharides extracted from many organism species such as yeast, fungi and bacteria, have attracted increasing attention to serve as drug delivery carriers. With their unique structure and innate immunocompetence, β-glucans are considered as promising carriers for targeting delivery especially when applied in the vaccine construction and oral administration of therapeutic agents. In this review, we focus on three types of β-glucans applied in the drug delivery system including yeast β-glucan, Schizophyllan and curdlan, highlighting the benefits of β-glucan based delivery system. We summarize how β-glucans as delivery vehicles have aided various therapeutics ranging from macromolecules including proteins, peptides and nucleic acids to small molecular drugs to reach desired cells or organs in terms of loading strategies. We also outline the challenges and future directions for developing the next generation of β-glucan based delivery systems.
Collapse
Affiliation(s)
- Liuyang He
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213003, China
| | - Zhichao Zhu
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213003, China
| | - Chunjian Qi
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213003, China.
| |
Collapse
|
4
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
5
|
Silva AJD, de Sousa MMG, de Macêdo LS, de França Neto PL, de Moura IA, Espinoza BCF, Invenção MDCV, de Pinho SS, da Gama MATM, de Freitas AC. RNA Vaccines: Yeast as a Novel Antigen Vehicle. Vaccines (Basel) 2023; 11:1334. [PMID: 37631902 PMCID: PMC10459952 DOI: 10.3390/vaccines11081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023] Open
Abstract
In the last decades, technological advances for RNA manipulation enabled and expanded its application in vaccine development. This approach comprises synthetic single-stranded mRNA molecules that direct the translation of the antigen responsible for activating the desired immune response. The success of RNA vaccines depends on the delivery vehicle. Among the systems, yeasts emerge as a new approach, already employed to deliver protein antigens, with efficacy demonstrated through preclinical and clinical trials. β-glucans and mannans in their walls are responsible for the adjuvant property of this system. Yeast β-glucan capsules, microparticles, and nanoparticles can modulate immune responses and have a high capacity to carry nucleic acids, with bioavailability upon oral immunization and targeting to receptors present in antigen-presenting cells (APCs). In addition, yeasts are suitable vehicles for the protection and specific delivery of therapeutic vaccines based on RNAi. Compared to protein antigens, the use of yeast for DNA or RNA vaccine delivery is less established and has fewer studies, most of them in the preclinical phase. Here, we present an overview of the attributes of yeast or its derivatives for the delivery of RNA-based vaccines, discussing the current challenges and prospects of this promising strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (A.J.D.S.)
| |
Collapse
|
6
|
Yang F, Cheung PCK. Fungal β-Glucan-Based Nanotherapeutics: From Fabrication to Application. J Fungi (Basel) 2023; 9:jof9040475. [PMID: 37108930 PMCID: PMC10143420 DOI: 10.3390/jof9040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal β-glucans are naturally occurring active macromolecules used in food and medicine due to their wide range of biological activities and positive health benefits. Significant research efforts have been devoted over the past decade to producing fungal β-glucan-based nanomaterials and promoting their uses in numerous fields, including biomedicine. Herein, this review offers an up-to-date report on the synthetic strategies of common fungal β-glucan-based nanomaterials and preparation methods such as nanoprecipitation and emulsification. In addition, we highlight current examples of fungal β-glucan-based theranostic nanosystems and their prospective use for drug delivery and treatment in anti-cancer, vaccination, as well as anti-inflammatory treatments. It is anticipated that future advances in polysaccharide chemistry and nanotechnology will aid in the clinical translation of fungal β-glucan-based nanomaterials for the delivery of drugs and the treatment of illnesses.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
7
|
Alvandi H, Hatamian-Zarmi A, Webster TJ. Bioactivity and applications of mushroom and polysaccharide-derived nanotherapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
8
|
Hamidi M, Okoro OV, Milan PB, Khalili MR, Samadian H, Nie L, Shavandi A. Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr Polym 2022; 284:119152. [DOI: 10.1016/j.carbpol.2022.119152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022]
|
9
|
Horue M, Rivero Berti I, Cacicedo ML, Castro GR. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. BIORESOURCE TECHNOLOGY 2021; 340:125671. [PMID: 34333348 DOI: 10.1016/j.biortech.2021.125671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Agro-industrial wastes to be a global concern since agriculture and industrial processes are growing exponentially with the fast increase of the world population. Biopolymers are complex molecules produced by living organisms, but also found in many wastes or derived from wastes. The main drawbacks for the use of polymers are the high costs of the polymer purification processes from waste and the scale-up in the case of biopolymer production by microorganisms. However, the use of biopolymers at industrial scale for the development of products with high added value, such as food or biomedical products, not only can compensate the primary costs of biopolymer production, but also improve local economies and environmental sustainability. The present review describes some of the most relevant aspects related to the synthesis of hybrid materials and nanocomposites based on biopolymers for the development of products with high-added value.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|