1
|
Masoumi-Ardakani Y, Eghbalian M, Fallah H, Jafari A, Shahouzehi B. Exploring serum miR-33b as a novel diagnostic marker for hypercholesterolemia and obesity: insights from a pilot case-control study. BMC Endocr Disord 2025; 25:27. [PMID: 39885530 PMCID: PMC11781059 DOI: 10.1186/s12902-025-01849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Obesity and atherosclerosis are significant metabolic diseases characterized by disrupted lipid metabolism. MicroRNAs (miRNAs) are small, conserved, non-coding RNA sequences consisting of approximately 22 nucleotides, playing crucial roles in biological and pathological functions. Among these, miR-33a/b is particularly associated with metabolic diseases, notably obesity and atherosclerosis. In this pilot case-control study, 45 subjects were examined, and serum miR-33b levels were measured in three groups: a control group, hypercholesterolemic (HC) subjects without obesity (HC group), and obese subjects without hypercholesterolemia (obese group). Serum miR-33b levels were determined using the real-time PCR method. The expression of miR-33b was significantly higher in the HC and obese groups compared to the control group (p < 0.001). The Body mass index (BMI) in the obese group was significantly higher than in the control and HC groups (p < 0.001). Additionally, serum total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-c) levels were higher in the HC group compared to both the control and obese groups. Our study demonstrated a correlation between serum miR-33b levels and HC and obesity. Finally, the ROC analysis demonstrated that miR-33b had an AUC of 0.74 for identifying hypercholesterolemia and an AUC of 0.76 for identifying obesity, indicating its acceptable diagnostic value alongside traditional markers. Therefore, serum miR-33b levels can be considered as a potential biomarker for obesity and hypercholesterolemia, but these finding are preliminary and further investigation is necessary in larger samples to confirm these associations.
Collapse
Affiliation(s)
- Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mostafa Eghbalian
- Neuromuscular Rehabilitation Research Centre, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Fallah
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Jafari
- Department of Community Nutrition, School of Nutrition Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Beydolah Shahouzehi
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, of Clinical Biochemistry, Kerman University of Medical Sciences, Jahad Boulevard Avicenna Avenue, Kerman, 7619813159, Iran.
| |
Collapse
|
2
|
Förster CY, Künzel SR, Shityakov S, Stavrakis S. Synergistic Effects of Weight Loss and Catheter Ablation: Can microRNAs Serve as Predictive Biomarkers for the Prevention of Atrial Fibrillation Recurrence? Int J Mol Sci 2024; 25:4689. [PMID: 38731908 PMCID: PMC11083177 DOI: 10.3390/ijms25094689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In atrial fibrillation (AF), multifactorial pathologic atrial alterations are manifested by structural and electrophysiological changes known as atrial remodeling. AF frequently develops in the context of underlying cardiac abnormalities. A critical mechanistic role played by atrial stretch is played by abnormal substrates in a number of conditions that predispose to AF, including obesity, heart failure, hypertension, and sleep apnea. The significant role of overweight and obesity in the development of AF is known; however, the differential effect of overweight, obesity, cardiovascular comorbidities, lifestyle, and other modifiable risk factors on the occurrence and recurrence of AF remains to be determined. Reverse remodeling of the atrial substrate and subsequent reduction in the AF burden by conversion into a typical sinus rhythm has been associated with weight loss through lifestyle changes or surgery. This makes it an essential pillar in the management of AF in obese patients. According to recently published research, microRNAs (miRs) may function as post-transcriptional regulators of genes involved in atrial remodeling, potentially contributing to the pathophysiology of AF. The focus of this review is on their modulation by both weight loss and catheter ablation interventions to counteract atrial remodeling in AF. Our analysis outlines the experimental and clinical evidence supporting the synergistic effects of weight loss and catheter ablation (CA) in reversing atrial electrical and structural remodeling in AF onset and in recurrent post-ablation AF by attenuating pro-thrombotic, pro-inflammatory, pro-fibrotic, arrhythmogenic, and male-sex-associated hypertrophic remodeling pathways. Furthermore, we discuss the promising role of miRs with prognostic potential as predictive biomarkers in guiding approaches to AF recurrence prevention.
Collapse
Affiliation(s)
- Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Stephan R. Künzel
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, 01307 Dresden, Germany
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 197101 Saint-Petersburg, Russia;
| | - Stavros Stavrakis
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Selvakumar SC, Preethi KA, Thomas P, Ameya KP, Sekar D. Non-Coding RNAs and Diet. EPIGENETICS AND HUMAN HEALTH 2024:31-48. [DOI: 10.1007/978-3-031-54215-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
5
|
Non-Coding RNAs in Health and Disease: Editorial. Biomedicines 2022; 11:biomedicines11010014. [PMID: 36672521 PMCID: PMC9855804 DOI: 10.3390/biomedicines11010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) represent the largest part of the transcriptional production of the human genome and play key roles in health and disease processes [...].
Collapse
|
6
|
Dang SJ, Wei WB, Li RL, Song CX, Xu J. Z-Guggulsterone Relieves Neuropathic Pain by Inhibiting the Expression of Astrocytes and Proinflammatory Cytokines in the Spinal Dorsal Horn. J Pain Res 2022; 15:1315-1324. [PMID: 35546904 PMCID: PMC9084390 DOI: 10.2147/jpr.s360126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
Objective The study objective was to investigate whether Z-guggulsterone can relieve neuropathic pain in sciatic nerve chronic constriction injury (CCI) mice by inhibiting the expression of astrocytes and proinflammatory cytokines in the spinal dorsal horn. Methods Neuropathic pain was induced and assessed in CCI mice. Z-guggulsterone was administered multiple times via intraperitoneal injection. Pain behaviour assessments were made by conducting paw withdrawal mechanical threshold (PWMT) and thermal withdrawal latency (TWL) tests. The expression level of the glial fibrillary acidic protein (GFAP) in the spinal dorsal horn was observed by immunofluorescence. The levels of the proinflammatory cytokines, IL-1β, IL-6 and TNF-α in the spinal cord were measured by ELISA. Data were analysed using one-way ANOVA or two-way ANOVA. Results The PWMT and TWL were higher on the 5th, 7th, 10th and 14th days after CCI, the expression level of GFAP in the spinal dorsal horn was lower, and the levels of IL-1β, IL-6 and TNF-α in the spinal cord were lower in the CCI+Z-GS-L, CCI+Z-GS-M and CCI+Z-GS-H groups than in the CCI+Veh group in a dose-dependent manner (P < 0.05). Conclusion Z-guggulsterone can relieve neurological pain in CCI mice, which may be related to the inhibition of astrocytes and proinflammatory cytokines in the spinal dorsal horn.
Collapse
Affiliation(s)
- Sha-Jie Dang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi’an, 710061, People’s Republic of China
| | - Wen-Bo Wei
- Department of Orthopedics, Shaanxi Provincial People’s Hospital, Xi’an, 710068, People’s Republic of China
| | - Rui-Li Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Can-Xu Song
- Department of Ultrasound, Shaanxi Provincial Cancer Hospital, Xi’an, 710061, People’s Republic of China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
- Correspondence: Jin Xu, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China, Email
| |
Collapse
|