1
|
Borreca A, Mantovani C, Desiato G, Corradini I, Filipello F, Elia CA, D'Autilia F, Santamaria G, Garlanda C, Morini R, Pozzi D, Matteoli M. Loss of interleukin 1 signaling causes impairment of microglia- mediated synapse elimination and autistic-like behaviour in mice. Brain Behav Immun 2024; 117:493-509. [PMID: 38307446 DOI: 10.1016/j.bbi.2024.01.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
In the last years, the hypothesis that elevated levels of proinflammatory cytokines contribute to the pathogenesis of neurodevelopmental diseases has gained popularity. IL-1 is one of the main cytokines found to be elevated in Autism spectrum disorder (ASD), a complex neurodevelopmental condition characterized by defects in social communication and cognitive impairments. In this study, we demonstrate that mice lacking IL-1 signaling display autistic-like defects associated with an excessive number of synapses. We also show that microglia lacking IL-1 signaling at early neurodevelopmental stages are unable to properly perform the process of synapse engulfment and display excessive activation of mammalian target of rapamycin (mTOR) signaling. Notably, even the acute inhibition of IL-1R1 by IL-1Ra is sufficient to enhance mTOR signaling and reduce synaptosome phagocytosis in WT microglia. Finally, we demonstrate that rapamycin treatment rescues the defects in IL-1R deficient mice. These data unveil an exclusive role of microglial IL-1 in synapse refinement via mTOR signaling and indicate a novel mechanism possibly involved in neurodevelopmental disorders associated with defects in the IL-1 pathway.
Collapse
Affiliation(s)
- Antonella Borreca
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cristina Mantovani
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Irene Corradini
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Fabia Filipello
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Chiara Adriana Elia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Francesca D'Autilia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giulia Santamaria
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Davide Pozzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| | - Michela Matteoli
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
2
|
Al-Beltagi M. Pre-autism: What a paediatrician should know about early diagnosis of autism. World J Clin Pediatr 2023; 12:273-294. [PMID: 38178935 PMCID: PMC10762597 DOI: 10.5409/wjcp.v12.i5.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
Autism, also known as an autism spectrum disorder, is a complex neurodevelopmental disorder usually diagnosed in the first three years of a child's life. A range of symptoms characterizes it and can be diagnosed at any age, including adolescence and adulthood. However, early diagnosis is crucial for effective management, prognosis, and care. Unfortunately, there are no established fetal, prenatal, or newborn screening programs for autism, making early detection difficult. This review aims to shed light on the early detection of autism prenatally, natally, and early in life, during a stage we call as "pre-autism" when typical symptoms are not yet apparent. Some fetal, neonatal, and infant biomarkers may predict an increased risk of autism in the coming baby. By developing a biomarker array, we can create an objective diagnostic tool to diagnose and rank the severity of autism for each patient. These biomarkers could be genetic, immunological, hormonal, metabolic, amino acids, acute phase reactants, neonatal brainstem function biophysical activity, behavioral profile, body measurements, or radiological markers. However, every biomarker has its accuracy and limitations. Several factors can make early detection of autism a real challenge. To improve early detection, we need to overcome various challenges, such as raising community awareness of early signs of autism, improving access to diagnostic tools, reducing the stigma attached to the diagnosis of autism, and addressing various culturally sensitive concepts related to the disorder.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
3
|
Chen CC, Lin CH, Lin MC. Maternal autoimmune disease and risk of offspring autism spectrum disorder - a nationwide population-based cohort study. Front Psychiatry 2023; 14:1254453. [PMID: 38025447 PMCID: PMC10654781 DOI: 10.3389/fpsyt.2023.1254453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders which cause long term social and behavior impairment, and its prevalence is on the rise. Studies about the association between maternal autoimmune diseases and offspring ASD have controversial results. The aim of this study was to investigate whether maternal autoimmune diseases increase the risk of ASD in offspring from a population-based perspective. Methods The data sources were Taiwan's National Health Insurance Research Database (NHIRD) and Taiwan's Maternal and Child Health Database (MCHD), which were integrated and used to identify newborns whose mothers were diagnosed with autoimmune disease. Newborns were matched by maternal age, neonatal gender, and date of birth with controls whose mothers were without autoimmune disease using a ratio of 1:4 between 2004 and 2019. Data on diagnoses of autoimmune disease and autism spectrum disorders were retrieved from NHIRD. Patients who had at least 3 outpatient visits or at least 1 admission with a diagnosis of autoimmune disease and autism spectrum disorders were defined as incidence cases. The risks of ASD in offspring were compared between mothers with or without autoimmune disorders. Results We identified 20,865 newborns whose mothers had been diagnosed with autoimmune disease before pregnancy and matched them at a ratio of 1:4 with a total of 83,460 newborn whose mothers were without autoimmune disease, by maternal age, neonatal gender, and date of birth. They were randomly selected as the control group. The cumulative incidence rates of autism spectrum disorders (ASD) were significantly higher among the offspring of mothers with autoimmune diseases. After adjusting for cofactors, the risk of ASD remained significantly higher in children whose mother had autoimmune diseases. Regarding to specific maternal autoimmune disease, Sjögren's syndrome and rheumatoid arthritis were both associated with elevated risks of ASD in offspring. Conclusion Mother with autoimmune disease might be associated with increasing the risk of autism spectrum disorder in offspring.
Collapse
Affiliation(s)
- Ching-Chu Chen
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Chih Lin
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Taskiran SY, Taskiran M, Unal G, Golgeli A. Group I mGluRs positive allosteric modulators improved schizophrenia-related behavioral and molecular deficits in the Poly I:C rat model. Pharmacol Biochem Behav 2023:173593. [PMID: 37390974 DOI: 10.1016/j.pbb.2023.173593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
RATIONALE Maternal polyinosinic-polycytidylic acid (Poly I:C) exposure leads to an increase in various proinflammatory cytokines and causes schizophrenia-like symptoms in offspring. In recent years, group I metabotropic glutamate receptors (mGluRs) have emerged as a potential target in the pathophysiology of schizophrenia. OBJECTIVES The aim of our study was to investigate the behavioral and molecular changes by using the mGlu1 receptor positive allosteric modulator (PAM) agent RO 67-7476, and the negative allosteric modulator (NAM) agent JNJ 16259685 and the mGlu5 receptor PAM agent VU-29, and NAM agent fenobam in the Poly I:C-induced schizophrenia model in rats. METHODS Female Wistar albino rats were treated with Poly I:C on day 14 of gestation after mating. On the postnatal day (PND) 35, 56 and 84, behavioral tests were performed in the male offspring. On the PND84, brain tissue was collected and the level of proinflammatory cytokines was determined by ELISA method. RESULTS Poly I:C caused impairments in all behavioral tests and increased the levels of proinflammatory cytokines. While PAM agents caused significant improvements in prepulse inhibition (PPI), novel object recognition (NOR), spontaneous alternation and reference memory tests, they brought the levels of proinflammatory cytokines closer to the control group. NAM agents were ineffective on behavioral tests. It was observed that PAM agents significantly improved Poly I:C-induced disruption in behavioral and molecular analyses. CONCLUSIONS These results suggest that PAM agents, particularly the mGlu5 receptor VU-29, are also promising and could be a potential target in schizophrenia.
Collapse
Affiliation(s)
| | - Mehmet Taskiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey.
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.
| | - Asuman Golgeli
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
5
|
Deriha K, Hashimoto E, Ukai W, Marchisella F, Nishimura E, Hashiguchi H, Tayama M, Ishii T, Riva MA, Kawanishi C. Reduced sociability in a prenatal immune activation model: Modulation by a chronic blonanserin treatment through the amygdala-hippocampal axis. J Psychiatr Res 2023; 164:209-220. [PMID: 37379611 DOI: 10.1016/j.jpsychires.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
The environmental disturbances in a critical neurodevelopmental period exert organizational effects on brain intrinsic plasticity including excitatory and inhibitory (E/I) neurotransmission those can cause the onset of psychiatric illness. We previously reported that treatment of neural precursor cells with N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 induced reduction of GABAergic interneuron differentiation, and these changes recovered by atypical antipsychotic blonanserin treatment in vitro. However, it remains unclear how this treatment affects neural circuit changes in hippocampus and amygdala, which might contribute to the prevention of onset process of schizophrenia. To elucidate the pathogenic/preventive mechanisms underlying prenatal environmental adversity-induced schizophrenia in more detail, we administered poly (I:C) followed by antipsychotics and examined alterations in social/cognitive behaviors, GABA/glutamate-related gene expressions with cell density and E/I ratio, and brain-derived neurotrophic factor (Bdnf) transcript levels, particularly in limbic areas. Treatment with antipsychotic blonanserin ameliorated impaired social/cognitive behaviors and increased parvalbumin (PV)-positive (+) cell density and its mRNA levels as well as Bdnf with long 3'UTR mRNA levels, particularly in the dorsal hippocampus, in rats exposed to maternal immune activation (MIA). Low dose of blonanserin and haloperidol altered GABA and glutamate-related mRNA levels, the E/I ratio, and Bdnf long 3'UTR mRNA levels in the ventral hippocampus and amygdala, but did not attenuate behavioral impairments. These results strongly implicate changes in PV expression, PV(+) GABAergic interneuron density, and Bdnf long 3'UTR expression levels, particularly in the dorsal hippocampus, in the pathophysiology and treatment responses of MIA-induced schizophrenia and highlight the therapeutic potential of blonanserin for developmental stress-related schizophrenia.
Collapse
Affiliation(s)
- Kenta Deriha
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Eri Hashimoto
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Wataru Ukai
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan; Department of Institutional Research, Center for Medical Education, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Francesca Marchisella
- Department of Pharmacological and Biomolecular Sciences University of Milan Via Balzaretti 9, 20133, Milan, Italy.
| | - Emi Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Hanako Hashiguchi
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Masaya Tayama
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| | - Takao Ishii
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan; Department of Occupational Therapy, Graduate School of Health Sciences, Sapporo Medical University, S-1, W-17, Chuo-ku, Sapporo, 0608556, Japan
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences University of Milan Via Balzaretti 9, 20133, Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Chiaki Kawanishi
- Department of Neuropsychiatry, Graduate School of Medicine, Sapporo Medical University, S-1, W-16, Chuo-ku, Sapporo, 0608543, Japan.
| |
Collapse
|
6
|
Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023; 231:109491. [PMID: 36924923 DOI: 10.1016/j.neuropharm.2023.109491] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes.
Collapse
Affiliation(s)
| | - Sara Cornuti
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Paola Tognini
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
7
|
Asbjornsdottir B, Miranda-Ribera A, Fiorentino M, Konno T, Cetinbas M, Lan J, Sadreyev RI, Gudmundsson LS, Gottfredsson M, Lauth B, Birgisdottir BE, Fasano A. Prophylactic Effect of Bovine Colostrum on Intestinal Microbiota and Behavior in Wild-Type and Zonulin Transgenic Mice. Biomedicines 2022; 11:biomedicines11010091. [PMID: 36672598 PMCID: PMC9855927 DOI: 10.3390/biomedicines11010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The microbiota-gut-brain axis (MGBA) involves bidirectional communication between intestinal microbiota and the gastrointestinal (GI) tract, central nervous system (CNS), neuroendocrine/neuroimmune systems, hypothalamic-pituitary-adrenal (HPA) axis, and enteric nervous system (ENS). The intestinal microbiota can influence host physiology and pathology. Dysbiosis involves the loss of beneficial microbial input or signal, diversity, and expansion of pathobionts, which can lead to loss of barrier function and increased intestinal permeability (IP). Colostrum, the first milk from mammals after birth, is a natural source of nutrients and is rich in oligosaccharides, immunoglobulins, growth factors, and anti-microbial components. The aim of this study was to investigate if bovine colostrum (BC) administration might modulate intestinal microbiota and, in turn, behavior in two mouse models, wild-type (WT) and Zonulin transgenic (Ztm)-the latter of which is characterized by dysbiotic microbiota, increased intestinal permeability, and mild hyperactivity-and to compare with control mice. Bioinformatics analysis of the microbiome showed that consumption of BC was associated with increased taxonomy abundance (p = 0.001) and diversity (p = 0.004) of potentially beneficial species in WT mice and shifted dysbiotic microbial community towards eubiosis in Ztm mice (p = 0.001). BC induced an anxiolytic effect in WT female mice compared with WT female control mice (p = 0.0003), and it reduced anxiogenic behavior in Ztm female mice compared with WT female control mice (p = 0.001), as well as in Ztm male mice compared with WT BC male mice (p = 0.03). As evidenced in MGBA interactions, BC supplementation may well be applied for prophylactic approaches in the future. Further research is needed to explore human interdependencies between intestinal microbiota, including eubiosis and pathobionts, and neuroinflammation, and the potential value of BC for human use. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Unit for Nutrition Research, Landspitali University Hospital and Faculty of Food Science and Nutrition, University of Iceland, 101 Reykjavik, Iceland
- Correspondence:
| | - Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Maria Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Takumi Konno
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Murat Cetinbas
- Department of Molecular Biology and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jinggang Lan
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Larus S. Gudmundsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, 101 Reykjavik, Iceland
| | - Magnus Gottfredsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Scientific Affairs, Landspitali University Hospital, 101 Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, 101 Reykjavik, Iceland
| | - Bertrand Lauth
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, 105 Reykjavik, Iceland
| | - Bryndis Eva Birgisdottir
- Unit for Nutrition Research, Landspitali University Hospital and Faculty of Food Science and Nutrition, University of Iceland, 101 Reykjavik, Iceland
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| |
Collapse
|
8
|
Alibek K, Niyazmetova L, Farmer S, Isakov T. Persistent Inflammation Initiated by TORCH Infections and Dysbiotic Microbiome in Autism Spectrum Disorders: A Prospect for Future Interventions. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e91179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorders (ASD) are a range of neurodevelopmental conditions that are clinically present early in childhood with the symptoms of social withdrawal and repetitive behavior. Despite an extensive research on ASD, no commonly accepted theory on the disease etiology exists. Hence, we reviewed several scientific publications, including reviews, preclinical and clinical investigations, and published hypotheses to analyze various opinions on the nature and cause of the disorder. Many studies suggest that infections and inflammation during pregnancy play a significant role in genetic and epigenetic changes in the developing fetus, resulting in an autistic phenotype in a child. Still, there is a lack of comprehensive literature about the multitude of autism inducing factors. Therefore, this article reviews and discusses available scientific evidence on the roles of viral, bacterial, fungal, and parasitic infections, overactivation of the immune system, and intestinal microflora in the pathogenesis and clinical manifestation of ASD. The overview of the scientific publications, including our own studies, suggests that TORCH infections, imbalanced microbiome, and persistent inflammation are significantly associated with the disruption of the social domain in ASD children. The ASD-related changes begin prenatally as maternal-to-fetal immune activation triggered by infection. It results in continuous low-grade inflammation and oxidative stress in a fetus, causing germline and somatic genetic changes in the developing brain and the establishment of the dysregulated immune system. These changes and dysregulations result in central and peripheral nervous systems dysfunctions as well as other comorbid conditions found in autistic children.
Collapse
|
9
|
Su Y, Lian J, Chen S, Zhang W, Deng C. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: a study in a maternal immune activation model. Front Cell Neurosci 2022; 16:1037105. [DOI: 10.3389/fncel.2022.1037105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Neuroinflammation in the central nervous system, particularly the prefrontal cortex (PFC), plays a role in the pathogenesis of schizophrenia, which has been found to be associated with maternal immune activation (MIA). Recent evidence suggests that epigenetic regulation involves in the MIA-induced neurodevelopmental disturbance. However, it is not well-understood how epigenetic modulation is involved in the neuroinflammation and pathogenesis of schizophrenia.Methods: This study explored the modulation of histone acetylation in both neuroinflammation and neurotransmission using an MIA rat model induced by prenatal polyriboinosinic-polyribocytidylic acid (Poly I:C) exposure, specifically examining those genes that were previously observed to be impacted by the exposure, including a subunit of nuclear factor kappa-B (Rela), Nod-Like-Receptor family Pyrin domain containing 3 (Nlrp3), NMDA receptor subunit 2A (Grin2a), 5-HT2A (Htr2a), and GABAA subunit β3 (Gabrb3).Results: Our results revealed global changes of histone acetylation on H3 (H3ace) and H4 (H4ace) in the PFC of offspring rats with prenatal Poly I:C exposure. In addition, it revealed enhancement of both H3ace and H4ace binding on the promoter region of Rela, as well as positive correlations between Rela and genes encoding histone acetyltransferases (HATs) including CREB-binding protein (CBP) and E1A-associated protein p300 (EP300). Although there was no change in H3ace or H4ace enrichment on the promoter region of Nlrp3, a significant enhancement of histone deacetylase 6 (HDAC6) binding on the promoter region of Nlrp3 and a positive correlation between Nlrp3 and Hdac6 were also observed. However, prenatal Poly I:C treatment did not lead to any specific changes of H3ace and H4ace on the promoter region of the target genes encoding neurotransmitter receptors in this study.Discussion: These findings demonstrated that epigenetic modulation contributes to NF-κB/NLRP3 mediated neuroinflammation induced by prenatal Poly I:C exposure via enhancement of histone acetylation of H3ace and H4ace on Rela and HDAC6-mediated NLRP3 transcriptional activation. This may further lead to deficits in neurotransmissions and schizophrenia-like behaviors observed in offspring.
Collapse
|
10
|
Vilotić A, Nacka-Aleksić M, Pirković A, Bojić-Trbojević Ž, Dekanski D, Jovanović Krivokuća M. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int J Mol Sci 2022; 23:ijms232314574. [PMID: 36498901 PMCID: PMC9738067 DOI: 10.3390/ijms232314574] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin-6 (IL-6) is an acknowledged inflammatory cytokine with a pleiotropic action, mediating innate and adaptive immunity and multiple physiological processes, including protective and regenerative ones. IL-8 is a pro-inflammatory CXC chemokine with a primary function in attracting and activating neutrophils, but also implicated in a variety of other cellular processes. These two ILs are abundantly expressed at the feto-maternal interface over the course of a pregnancy and have been shown to participate in numerous pregnancy-related events. In this review, we summarize the literature data regarding their role in healthy and pathological pregnancies. The general information related to IL-6 and IL-8 functions is followed by an overview of their overall expression in cycling endometrium and at the feto-maternal interface. Further, we provide an overview of their involvement in pregnancy establishment and parturition. Finally, the implication of IL-6 and IL-8 in pregnancy-associated pathological conditions, such as pregnancy loss, preeclampsia, gestational diabetes mellitus and infection/inflammation is discussed.
Collapse
|
11
|
The role of maternal immune activation in the immunological and neurological pathogenesis of autism. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Tartaglione AM, Villani A, Ajmone-Cat MA, Minghetti L, Ricceri L, Pazienza V, De Simone R, Calamandrei G. Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Transl Psychiatry 2022; 12:384. [PMID: 36104346 PMCID: PMC9474453 DOI: 10.1038/s41398-022-02149-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a sex-biased neurodevelopmental disorder with a male to female prevalence of 4:1, characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests or activities. Microbiota alterations as well as signs of neuroinflammation have been also reported in ASD. The involvement of immune dysregulation in ASD is further supported by evidence suggesting that maternal immune activation (MIA), especially during early pregnancy, may be a risk factor for ASD. The present study was aimed at characterizing the effects of MIA on behavior, gut microbiota and neuroinflammation in the mouse offspring also considering the impact of MIA in the two sexes. MIA offspring exhibited significant ASD-like behavioral alterations (i.e., deficits in sociability and sensorimotor gating, perseverative behaviors). The analysis of microbiota revealed changes in specific microbial taxa that recapitulated those seen in ASD children. In addition, molecular analyses indicated sex-related differences in the neuroinflammatory responses triggered by MIA, with a more prominent effect in the cerebellum. Our data suggest that both sexes should be included in the experimental designs of preclinical studies in order to identify those mechanisms that confer different vulnerability to ASD to males and females.
Collapse
Affiliation(s)
- Anna Maria Tartaglione
- Centre for Behavioral Sciences and Mental Health, Italian National Institute of Health (ISS), Rome, Italy.
| | - Annacandida Villani
- grid.413503.00000 0004 1757 9135Gastroenterology Unit IRCCS “Casa Sollievo della Sofferenza”, Hospital San Giovanni Rotondo, Foggia, Italy
| | - Maria Antonietta Ajmone-Cat
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Italian National Institute of Health (ISS), Rome, Italy
| | - Luisa Minghetti
- grid.416651.10000 0000 9120 6856Research Coordination and Support Service, Italian National Institute of Health (ISS), Rome, Italy
| | - Laura Ricceri
- grid.416651.10000 0000 9120 6856Centre for Behavioral Sciences and Mental Health, Italian National Institute of Health (ISS), Rome, Italy
| | - Valerio Pazienza
- grid.413503.00000 0004 1757 9135Gastroenterology Unit IRCCS “Casa Sollievo della Sofferenza”, Hospital San Giovanni Rotondo, Foggia, Italy
| | - Roberta De Simone
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Italian National Institute of Health (ISS), Rome, Italy
| | - Gemma Calamandrei
- grid.416651.10000 0000 9120 6856Centre for Behavioral Sciences and Mental Health, Italian National Institute of Health (ISS), Rome, Italy
| |
Collapse
|
13
|
Banerjee N, Adak P. Birth related parameters are important contributors in autism spectrum disorders. Sci Rep 2022; 12:14277. [PMID: 35996009 PMCID: PMC9395415 DOI: 10.1038/s41598-022-18628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorders is a group of childhood onset neurodevelopmental disorders affecting millions of children across the globe. Characterised by age inappropriate lack of reciprocal social interaction, repetitive behaviours and deficits in communication skills, it has been found to have genetic, epigenetic and environmental contributions. In this work, we wanted to identify the effects of birth related parameters on the disease pathogenesis in an exposed population of West Bengal, India. We have considered age of both parents at birth, difference in parental age, familial history of mental illness, delay in developmental-milestones, birth-weight, birth-order, birth-term, mode of delivery and gestational complications as contributors. We found the parental age and their age difference to be the most important contributors towards ASD in this population. Birth order, sex of the probands, complications during gestation, birth weight, family history of mental illness and birth history also contributed to the condition, although to a lesser extent. Since such types of data are lacking in Indian population, this report adds useful information to the relevant field.
Collapse
Affiliation(s)
- Nilanjana Banerjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra Rehabilitation and Research Institute for the Handicapped, 482 Madudah, Plot I-24, Sector J, E.M. Bypass, Kolkata, West Bengal, 700107, India.
| | - Pallabi Adak
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra Rehabilitation and Research Institute for the Handicapped, 482 Madudah, Plot I-24, Sector J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| |
Collapse
|
14
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
15
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
16
|
Liu W, Li L, Xia X, Zhou X, Du Y, Yin Z, Wang J. Integration of Urine Proteomic and Metabolomic Profiling Reveals Novel Insights Into Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:780747. [PMID: 35615451 PMCID: PMC9124902 DOI: 10.3389/fpsyt.2022.780747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders whose etiology and pathogenesis are not fully understood. To gain insight into the molecular basis of ASD, we performed comparative integrated proteomic and metabolomic analyses of urine samples from children diagnosed with ASD and healthy children. All 160 samples underwent proteomics analysis and 60 were analyzed by liquid chromatography-mass spectrometry to obtain metabolite profiles. We identified 77 differentially expressed proteins (DEPs; 21 downregulated and 56 upregulated) and 277 differentially expressed metabolites; 31 of the DEPs including glutathione, leukocyte antigens, glycoproteins, neural adhesion factors, and immunoglobulins, have been implicated in neuroinflammation. The proteomic analysis also revealed 8 signaling pathways that were significantly dysregulated in ASD patients; 3 of these (transendothelial leukocyte migration, antigen processing and presentation, and graft vs. host disease) were associated with the neuroimmune response. The metabolism of tryptophan, which is also related to the neuroimmune response, has been found to play a potential role in ASD. Integrated proteome and metabolome analysis showed that 6 signaling pathways were significantly enriched in ASD patients, 3 of which were correlated with impaired neuroinflammation (glutathione metabolism, metabolism of xenobiotics by cytochrome P450 and transendothelial migration of leukocyte). We also found a correlation between prostaglandin (PG) E2 levels and the inflammatory response in ASD. These results underscore the prominent role of the neuroimmune response in ASD and provide potential biomarkers that can be used for diagnosis or as targets for early intervention.
Collapse
Affiliation(s)
- Wenlong Liu
- Department of Child Development and Behavior, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Liming Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xiaochun Xia
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xulan Zhou
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Yukai Du
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqing Yin
- Division of Neonatology, The People's Hospital of Dehong Autonomous Prefecture, Mangshi, China
| | - Juan Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| |
Collapse
|
17
|
Gabis LV, Attia OL, Goldman M, Barak N, Tefera P, Shefer S, Shaham M, Lerman-Sagie T. The myth of vaccination and autism spectrum. Eur J Paediatr Neurol 2022; 36:151-158. [PMID: 34996019 PMCID: PMC8694782 DOI: 10.1016/j.ejpn.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Among all of the studied potential causes of autism, vaccines have received some of the most scrutiny and have been the topic of many evidence-based studies. These efforts have led the great majority of scientists, physicians, and public health researchers to refute causation between vaccines and autism. RATIONALE This presumed association and concern has been a major contributor to parents' refusal to immunize their children and has become a major threat to public health in secluded populations over the last two decades, even prior to the COVID-19 pandemic. With the emergence of COVID-19 immunizations, sentiments towards this topic were addressed as a public health concern that may influence the ability to overcome the Corona virus worldwide. SCIENTIFIC REVIEW OF DATA Despite the overwhelming data demonstrating that there is no link between vaccines and autism, many parents are hesitant to immunize their children because of the alleged association. Other contributing factors to the myths and conspiracy theories surrounding the association between vaccines and autism include the fact that the diagnosis of autism is typically made after the age of receiving the main childhood immunizations, as well as the occasional occurrence of regression after the age of first year vaccinations. In spite of vast evidence that the main contribution to the increase in incidence is from improvement of the diagnostic process, this rapid and publicized rise in autism diagnoses feeds parental concerns regarding any medical intervention that may be associated with the health of their children. RECOMMENDATIONS It is plausible that with more evidence-based studies linking autism to specific etiologies the myth will diminish and disappear eventually. In an era where conspiracy theories are prevalent on social media, it is critical that evidence-based studies relating autism to specific etiologies be made public, and that information concerning autism diagnosis and causes be made more readily available through social media and parental organizations.
Collapse
Affiliation(s)
- Lidia V Gabis
- Sackler School of Medicine at Tel Aviv University, Israel; Maccabi Health Services, Israel.
| | - Odelia Leon Attia
- Weinberg Developmental Center, at Safra Children's Hospital, Tel Hashomer, Israel.
| | - Mia Goldman
- Sackler School of Medicine at Tel Aviv University, Israel.
| | - Noy Barak
- Department of Industrial Engineering at Tel-Aviv University, Israel.
| | - Paula Tefera
- Sackler School of Medicine at Tel Aviv University, Israel.
| | - Shahar Shefer
- Weinberg Developmental Center, at Safra Children's Hospital, Tel Hashomer, Israel.
| | - Meirav Shaham
- Department of Statistics at University of Haifa, Haifa, Israel.
| | - Tally Lerman-Sagie
- Sackler School of Medicine at Tel Aviv University, Israel; Pediatric Neurology Unit at Wolfson Medical Center, Holon, Israel.
| |
Collapse
|
18
|
Su Y, Lian J, Hodgson J, Zhang W, Deng C. Prenatal Poly I:C Challenge Affects Behaviors and Neurotransmission via Elevated Neuroinflammation Responses in Female Juvenile Rats. Int J Neuropsychopharmacol 2021; 25:160-171. [PMID: 34893855 PMCID: PMC8832231 DOI: 10.1093/ijnp/pyab087] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exposure to polyriboinosinic-polyribocytidylic acid (Poly I:C) in pregnant rats has been reported to cause schizophrenia-like behaviors and abnormal neurotransmissions in adult, particularly male, offspring. However, what is less well understood are the effects of maternal Poly I:C exposure on adolescent behaviors and neurotransmission in female juvenile rats. METHODS Female adolescent Poly I:C offspring were constructed by treating with 5 mg/kg Poly I:C on timed pregnant rats (gestation day 15). A battery of behavioral tests was conducted during postnatal day 35-60. Neurotransmitter receptors and inflammation markers in brain regions were evaluated by RT-qPCR on postnatal day 60. RESULTS Open field, elevated plus maze, and forced swimming tests revealed that prenatal Poly I:C exposure led to elevated anxiety-like and depression-like behaviors in female adolescent offspring. Deficits in pre-pulse inhibition and social interaction were also observed. However, the Poly I:C rats had better performance than the controls in the novel object recognition memory test, which demonstrated a behavioral phenotype with improved cognitive function. Prenatal Poly I:C exposure caused brain region-specific elevation of the P2X7 receptor- and NF-κB-NLRP3-IL-1β inflammatory signaling in female juvenile rats. Prenatal Poly I:C exposure decreased expression of GABAA receptor subunits Gabrb3 in the prefrontal cortex and Gabrb1 and dopamine D2 receptor in the hippocampus, but increased NMDA receptor subunit Grin2a in the prefrontal cortex, 5-HT2A in the hippocampus, and Gabrb3 and D2 receptor in the nucleus accumben. CONCLUSIONS Prenatal Poly I:C challenge causes behavioral deficits and brain-specific neurotransmission changes via elevated neuroinflammation responses in female adolescent offspring rats.
Collapse
Affiliation(s)
- Yueqing Su
- The School of Public Health, Fujian Medical University, Fuzhou, China,Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China,Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - James Hodgson
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Wenchang Zhang
- The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia,School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia,Correspondence: Chao Deng, PhD, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia ()
| |
Collapse
|
19
|
Zawadzka A, Cieślik M, Adamczyk A. The Role of Maternal Immune Activation in the Pathogenesis of Autism: A Review of the Evidence, Proposed Mechanisms and Implications for Treatment. Int J Mol Sci 2021; 22:ijms222111516. [PMID: 34768946 PMCID: PMC8584025 DOI: 10.3390/ijms222111516] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease that is characterized by a deficit in social interactions and communication, as well as repetitive and restrictive behaviors. Increasing lines of evidence suggest an important role for immune dysregulation and/or inflammation in the development of ASD. Recently, a relationship between inflammation, oxidative stress, and mitochondrial dysfunction has been reported in the brain tissue of individuals with ASD. Some recent studies have also reported oxidative stress and mitochondrial abnormalities in animal models of maternal immune activation (MIA). This review is focused on the hypothesis that MIA induces microglial activation, oxidative stress, and mitochondrial dysfunction, a deleterious trio in the brain that can lead to neuroinflammation and neurodevelopmental pathologies in offspring. Infection during pregnancy activates the mother’s immune system to release proinflammatory cytokines, such as IL-6, TNF-α, and others. Furthermore, these cytokines can directly cross the placenta and enter the fetal circulation, or activate resident immune cells, resulting in an increased production of proinflammatory cytokines, including IL-6. Proinflammatory cytokines that cross the blood–brain barrier (BBB) may initiate a neuroinflammation cascade, starting with the activation of the microglia. Inflammatory processes induce oxidative stress and mitochondrial dysfunction that, in turn, may exacerbate oxidative stress in a self-perpetuating vicious cycle that can lead to downstream abnormalities in brain development and behavior.
Collapse
Affiliation(s)
| | - Magdalena Cieślik
- Correspondence: (M.C.); (A.A.); Tel.: +48-22-6086420 (M.C.); +48-22-6086572 (A.A.)
| | - Agata Adamczyk
- Correspondence: (M.C.); (A.A.); Tel.: +48-22-6086420 (M.C.); +48-22-6086572 (A.A.)
| |
Collapse
|
20
|
Lins B. Maternal immune activation as a risk factor for psychiatric illness in the context of the SARS-CoV-2 pandemic. Brain Behav Immun Health 2021; 16:100297. [PMID: 34308388 PMCID: PMC8279925 DOI: 10.1016/j.bbih.2021.100297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
Inflammation, due to infectious pathogens or other non-infectious stimuli, during pregnancy is associated with elevated risk for neurodevelopmental disorders such as schizophrenia and autism in the offspring. Although historically identified through retrospective epidemiologic studies, the relationship between maternal immune activation and offspring neurodevelopmental disease risk is now well established because of clinical studies which utilized prospective birth cohorts, serologically confirmed infection records, and subsequent long-term offspring follow-up. These efforts have been corroborated by preclinical research which demonstrates anatomical, biochemical, and behavioural alterations that resemble the clinical features of psychiatric illnesses. Intervention studies further demonstrate causal roles of inflammatory mediators, such as cytokines, in these long-lasting changes in behaviour and brain. This review summarizes a selection of maternal immune activation literature that explores the relationship between these inflammatory mediators and the neuropsychiatric-like effects later observed in the offspring. This literature is presented alongside emerging information regarding SARS-CoV-2 infection in pregnancy, with discussion of how these data may inform future research regarding the effects of the present coronavirus pandemic on emerging birth cohorts.
Collapse
Affiliation(s)
- Brittney Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| |
Collapse
|