1
|
Wu X, Peng W, Zhang X, Tang T, Deng L, Xu Y, Liu X, Wang F, Peng W, Huang J, Zhong X. Clinicopathological and molecular characterization of astrocytoma. Front Mol Neurosci 2025; 18:1483833. [PMID: 39963393 PMCID: PMC11830656 DOI: 10.3389/fnmol.2025.1483833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Astrocytoma is a rare tumour of the central nervous system that often manifests with non-specific clinical symptoms and lacks distinct histological features. There is a pressing need for further understanding of the clinicopathological and molecular characteristics of astrocytoma. Identifying mutant genes can aid in reliable and early diagnosis, as well as provide insights for the development of targeted therapies. Methods This study aims to investigate the clinicopathologic and molecular characteristics of astroblastoma. A total of four patients diagnosed with astroblastoma were included in the analysis. Clinical features, histological findings, and immunohistochemistry results were reviewed and analyzed. Genetic alterations were identified using fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS), followed by patient follow-up. Results The study included four female patients, ranging in age from 8 to 44 years. One patient had a tumour in the right parietal lobe, while the other three had tumours in the spinal cord. Histology is usually characterized by pseudorosettes of astroblasts and hyalinization of blood vessels. These tumors showed a growth pattern similar to traditional intracranial astroblastoma, and the histological manifestations of the four patients were all high-grade, showing features of high-density areas of tumor cells or necrosis. Immunohistochemical staining revealed that all four patients expressed OLIG2, EMA, and vimentin, while three patients also expressed GFAP and S-100. The Ki-67 positivity index was approximately 15% in three cases and 10% in one case. Fluorescence in situ hybridization (FISH) using break-apart probes showed EWRS1 breaks in three patients and MN1 breaks in one. Further DNA or RNA-targeted biallelic sequencing identified an EWSR1(Exon1-7)-BEND2(Exon2-14) fusion in case 1, and an EWSR1(Exon1-7)-BEND2(Intergenic) fusion in case 2. In case 3, an EWSR1(Exon1-7)-NUDT10(Intergenic) fusion was present, and in case 4, an MN1(Exon1)-BEND2(Exon2) fusion was identified. The EWSR1-NUDT10 gene fusion is a new fusion type in astroblastoma. The patients were followed up for 76.5, 17.6, 33.7, and 61.3 months, respectively. Three cases experienced tumour recurrences at the spinal cord site, with multiple recurrences in case 4. Discussion Our study unveiled the distinctive clinicopathological and molecular mutational characteristics of astrocytoma, while also identifying rare mutated genes. Additionally, the detection of MN1 or EWSR1 gene fusion through FISH or next-generation sequencing can provide valuable insights into the molecular mechanisms and aid in the differential diagnosis of astrocytoma.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Peng
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Xu Zhang
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tao Tang
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling Deng
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuxia Xu
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoyun Liu
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wujian Peng
- Department of Nephrology, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jianrong Huang
- Department of Nephrology, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoni Zhong
- Department of Pathology, Shenzhen People’s Hospital, The Second Affiliated Hospital of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Janiczek-Polewska M, Kolenda T, Poter P, Jagiełło I, Kozłowska-Masłoń J, Regulska K, Malicki J, Marszałek A. Nucleus Accumbens Associated Protein 1 in Cancers-The Real Value. Int J Mol Sci 2024; 25:13632. [PMID: 39769395 PMCID: PMC11728236 DOI: 10.3390/ijms252413632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Malignant tumors are a leading cause of death worldwide, second only to cardiovascular disease. They occur in every population and have a high risk of mortality. The etiopathogenesis of malignant tumors is diverse and there are still many unknowns, leading to huge diagnostic and therapeutic challenges. Therefore, the search for ideal diagnostic and therapeutic agents is ongoing. One of the promising factors affecting cancer is the nucleus accumbens associated protein 1 (NACC1). It is a transcriptional coregulator. Moreover, it plays a multifaceted role in promoting tumorigenesis. NACC1 expression analyses were performed using The Cancer Genome Atlas (TCGA) data accessed from the University of Alabama at Birmingham Cancer (UALCAN) database, and the expression data were interconnected with clinicopathological parameters. All statistical analyses were conducted using GraphPad Prism and Statistica. The results revealed that NACC1 was expressed in almost all of the analyzed cancers, and its expression level correlates with different clinicopathological parameters. This study demonstrates that NACC1 is potentially involved in the pathogenesis, invasion, and immune response associated with many cancers. However, NACC1 is not a suitable candidate as a diagnostic biomarker as it is not specific for any type of malignancy and there are discrepancies in its expression in relation to many clinicopathological parameters. The implementation of NACC1 as a therapeutic target may improve the effectiveness of cancer treatments.
Collapse
Affiliation(s)
- Marlena Janiczek-Polewska
- Department of Clinical Oncology, Greater Poland Cancer Center, 61-866 Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Tomasz Kolenda
- Research and Implementation Unit, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Paulina Poter
- Department of Clinical Pathology, Poznan University of Medical Sciences, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Inga Jagiełło
- Department of Clinical Pathology, Poznan University of Medical Sciences, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznan, Poland
| | - Katarzyna Regulska
- Research and Implementation Unit, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Pharmacy, Greater Poland Cancer Centre, 61-866 Poznan, Poland
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Julian Malicki
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Andrzej Marszałek
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
3
|
Zhang X, Blumenthal R, Cheng X. DNA-binding proteins from MBD through ZF to BEN: recognition of cytosine methylation status by one arginine with two conformations. Nucleic Acids Res 2024; 52:11442-11454. [PMID: 39329271 PMCID: PMC11514455 DOI: 10.1093/nar/gkae832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Maintenance methylation, of palindromic CpG dinucleotides at DNA replication forks, is crucial for the faithful mitotic inheritance of genomic 5-methylcytosine (5mC) methylation patterns. MBD proteins use two arginine residues to recognize symmetrically-positioned methyl groups in fully-methylated 5mCpG/5mCpG and 5mCpA/TpG dinucleotides. In contrast, C2H2 zinc finger (ZF) proteins recognize CpG and CpA, whether methylated or not, within longer specific sequences in a site- and strand-specific manner. Unmethylated CpG sites, often within CpG island (CGI) promoters, need protection by protein factors to maintain their hypomethylated status. Members of the BEN domain proteins bind CGCG or CACG elements within CGIs to regulate gene expression. Despite their overall structural diversity, MBD, ZF and BEN proteins all use arginine residues to recognize guanine, adopting either a 'straight-on' or 'oblique' conformation. The straight-on conformation accommodates a methyl group in the (5mC/T)pG dinucleotide, while the oblique conformation can clash with the methyl group of 5mC, leading to preferential binding of unmethylated sequences.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Deehan MA, Kothuis JM, Sapp E, Chase K, Ke Y, Seeley C, Iuliano M, Kim E, Kennington L, Miller R, Boudi A, Shing K, Li X, Pfister E, Anaclet C, Brodsky M, Kegel-Gleason K, Aronin N, DiFiglia M. Nacc1 Mutation in Mice Models Rare Neurodevelopmental Disorder with Underlying Synaptic Dysfunction. J Neurosci 2024; 44:e1610232024. [PMID: 38388424 PMCID: PMC10993038 DOI: 10.1523/jneurosci.1610-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/05/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
A missense mutation in the transcription repressor Nucleus accumbens-associated 1 (NACC1) gene at c.892C>T (p.Arg298Trp) on chromosome 19 causes severe neurodevelopmental delay ( Schoch et al., 2017). To model this disorder, we engineered the first mouse model with the homologous mutation (Nacc1+/R284W ) and examined mice from E17.5 to 8 months. Both genders had delayed weight gain, epileptiform discharges and altered power spectral distribution in cortical electroencephalogram, behavioral seizures, and marked hindlimb clasping; females displayed thigmotaxis in an open field. In the cortex, NACC1 long isoform, which harbors the mutation, increased from 3 to 6 months, whereas the short isoform, which is not present in humans and lacks aaR284 in mice, rose steadily from postnatal day (P) 7. Nuclear NACC1 immunoreactivity increased in cortical pyramidal neurons and parvalbumin containing interneurons but not in nuclei of astrocytes or oligodendroglia. Glial fibrillary acidic protein staining in astrocytic processes was diminished. RNA-seq of P14 mutant mice cortex revealed over 1,000 differentially expressed genes (DEGs). Glial transcripts were downregulated and synaptic genes upregulated. Top gene ontology terms from upregulated DEGs relate to postsynapse and ion channel function, while downregulated DEGs enriched for terms relating to metabolic function, mitochondria, and ribosomes. Levels of synaptic proteins were changed, but number and length of synaptic contacts were unaltered at 3 months. Homozygosity worsened some phenotypes including postnatal survival, weight gain delay, and increase in nuclear NACC1. This mouse model simulates a rare form of autism and will be indispensable for assessing pathophysiology and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark A Deehan
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Josine M Kothuis
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kathryn Chase
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Connor Seeley
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Maria Iuliano
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Emily Kim
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Lori Kennington
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Rachael Miller
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kai Shing
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Edith Pfister
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, California 95817
| | - Michael Brodsky
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Kimberly Kegel-Gleason
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Neil Aronin
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
5
|
Liu K, Zhang J, Xiao Y, Yang A, Song X, Li Y, Chen Y, Hughes TR, Min J. Structural insights into DNA recognition by the BEN domain of the transcription factor BANP. J Biol Chem 2023; 299:104734. [PMID: 37086783 DOI: 10.1016/j.jbc.2023.104734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023] Open
Abstract
The BEN domain-containing transcription factors regulate transcription by recruiting chromatin-modifying factors to specific chromatin regions via their DNA-binding BEN domains. The BEN domain of BANP has been shown to bind to a CGCG DNA sequence or an AAA-containing MARs (matrix attachment regions) DNA sequence. Consistent with these in vivo observations, we identified an optimal DNA binding sequence of AAATCTCG by PBM (protein binding microarray), which was also confirmed by our ITC (Isothermal Titration Calorimetry) and mutagenesis results to uncover additional mechanistic details about DNA binding by the BEN domain of BANP. We then determined crystal structures of the BANP BEN domain in apo form and in complex with a CGCG-containing DNA, respectively, which revealed that the BANP BEN domain mainly used the electrostatic interactions to bind DNA with some base-specific interactions with the TC motifs. Our ITC results also showed that BANP bound to unmethylated and methylated DNAs with comparable binding affinities. Our complex structure of BANP-mCGCG revealed that the BANP BEN domain bound to the unmethylated and methylated DNAs in a similar mode and cytosine methylation did not get involved in binding, which is also consistent with our observations from the complex structures of the BEND6 BEN domain with the CGCG or CGmCG DNAs. Taken together, our results further elucidate the elements important for DNA recognition and transcriptional regulation by the BANP BEN domain-containing transcription factor.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| | - Jin Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yuqing Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ally Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Xiaosheng Song
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yanjun Li
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yunxia Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
6
|
Bonchuk A, Balagurov K, Georgiev P. BTB domains: A structural view of evolution, multimerization, and protein-protein interactions. Bioessays 2023; 45:e2200179. [PMID: 36449605 DOI: 10.1002/bies.202200179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Broad-complex, Tramtrack, and Bric-à-brac/poxvirus and zinc finger (BTB/POZ) is a conserved domain found in many eukaryotic proteins with diverse cellular functions. Recent studies revealed its importance in multiple developmental processes as well as in the onset and progression of oncological diseases. Most BTB domains can form multimers and selectively interact with non-BTB proteins. Structural studies of BTB domains delineated the presence of different interfaces involved in various interactions mediated by BTBs and provided a basis for the specific inhibition of distinct protein-interaction interfaces. BTB domains originated early in eukaryotic evolution and progressively adapted their structural elements to perform distinct functions. In this review, we summarize and discuss the structural principles of protein-protein interactions mediated by BTB domains based on the recently published structural data and advances in protein modeling. We propose an update to the structure-based classification of BTB domain families and discuss their evolutionary interconnections.
Collapse
Affiliation(s)
- Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Balagurov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Ma L, Xie D, Luo M, Lin X, Nie H, Chen J, Gao C, Duo S, Han C. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. SCIENCE ADVANCES 2022; 8:eabn1606. [PMID: 35613276 PMCID: PMC9132480 DOI: 10.1126/sciadv.abn1606] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/08/2022] [Indexed: 05/07/2023]
Abstract
The chromatin state, which undergoes global changes during spermatogenesis, is critical to meiotic initiation and progression. However, the key regulators involved and the underlying molecular mechanisms remain to be uncovered. Here, we report that mouse BEND2 is specifically expressed in spermatogenic cells around meiotic initiation and that it plays an essential role in meiotic progression. Bend2 gene knockout in male mice arrested meiosis at the transition from zygonema to pachynema, disrupted synapsis and DNA double-strand break repair, and induced nonhomologous chromosomal pairing. BEND2 interacted with chromatin-associated proteins that are components of certain transcription-repressor complexes. BEND2-binding sites were identified in diverse chromatin states and enriched in simple sequence repeats. BEND2 inhibited the expression of genes involved in meiotic initiation and regulated chromatin accessibility and the modification of H3K4me3. Therefore, our study identified BEND2 as a previously unknown key regulator of meiosis, gene expression, and chromatin state during mouse spermatogenesis.
Collapse
Affiliation(s)
- Longfei Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hengyu Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxu Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Duo
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Nakayama N. Mechanisms and Novel Therapeutic Approaches for Gynecologic Cancer. Biomedicines 2022; 10:biomedicines10051014. [PMID: 35625749 PMCID: PMC9138444 DOI: 10.3390/biomedicines10051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Naomi Nakayama
- Department of General Medicine and Community Health Science, School of Medicine, Hyogo Medical University, Hyogo 669-2321, Japan
| |
Collapse
|
9
|
Zheng L, Liu J, Niu L, Kamran M, Yang AWH, Jolma A, Dai Q, Hughes TR, Patel DJ, Zhang L, Prasanth SG, Yu Y, Ren A, Lai EC. Distinct structural bases for sequence-specific DNA binding by mammalian BEN domain proteins. Genes Dev 2022; 36:225-240. [PMID: 35144965 PMCID: PMC8887127 DOI: 10.1101/gad.348993.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
Abstract
The BEN domain is a recently recognized DNA binding module that is present in diverse metazoans and certain viruses. Several BEN domain factors are known as transcriptional repressors, but, overall, relatively little is known of how BEN factors identify their targets in humans. In particular, X-ray structures of BEN domain:DNA complexes are only known for Drosophila factors bearing a single BEN domain, which lack direct vertebrate orthologs. Here, we characterize several mammalian BEN domain (BD) factors, including from two NACC family BTB-BEN proteins and from BEND3, which has four BDs. In vitro selection data revealed sequence-specific binding activities of isolated BEN domains from all of these factors. We conducted detailed functional, genomic, and structural studies of BEND3. We show that BD4 is a major determinant for in vivo association and repression of endogenous BEND3 targets. We obtained a high-resolution structure of BEND3-BD4 bound to its preferred binding site, which reveals how BEND3 identifies cognate DNA targets and shows differences with one of its non-DNA-binding BEN domains (BD1). Finally, comparison with our previous invertebrate BEN structures, along with additional structural predictions using AlphaFold2 and RoseTTAFold, reveal distinct strategies for target DNA recognition by different types of BEN domain proteins. Together, these studies expand the DNA recognition activities of BEN factors and provide structural insights into sequence-specific DNA binding by mammalian BEN proteins.
Collapse
Affiliation(s)
- Luqian Zheng
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingjing Liu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Lijie Niu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mohammad Kamran
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ally W H Yang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Arttu Jolma
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Qi Dai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Dinshaw J Patel
- Structural Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Long Zhang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
10
|
Liu X, Li X, Huang Z, Liao X, Shi B. Interaction mechanism of collagen peptides with four phenolic compounds in the ethanol-water solution. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00065-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractThis study demonstrated the interaction mechanism of collagen peptides (CPs) with 4-ethylphenol (4-EP), phenol, guaiacol, and 4-ethylguaiacol (4-EG) in the ethanol-water solution. The ultraviolet visible spectroscopy, zeta potential tests and hydrogen nuclear magnetic spectroscopy manifested that CPs interacted with the phenolic compounds. Meanwhile, Isothermal titration calorimetry determination indicated that the CPs was hydrogen bonded with 4-EP in 52 %(v/v) ethanol-water solution, while the hydrophobic forces played a major role in the interaction of CPs with guaiacol and 4-EG, respectively. Moreover, hydrogen and hydrophobic bonds were involved in the interaction between CPs and phenol. Finally, Head Space-solid Phase Microextraction Gas Chromatography Mass Spectrometry analysis indicated that the content of phenolic compounds in model solution efficiently decreased with the presence of CPs. In the real liquor, it was found that the content of volatile compounds (including phenolic compounds) was obviously decreased after CPs added.
Collapse
|
11
|
Lyu B, Dong Y, Kang J. A New Case of de novo Variant c.892C>T (p.Arg298Trp) in NACC1: A First Case Report From China. Front Pediatr 2021; 9:754261. [PMID: 34869110 PMCID: PMC8634650 DOI: 10.3389/fped.2021.754261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The nucleus accumbens associated 1 (NACC1) gene is a transcription factor member of the BTB/POZ family. A de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1 may define a syndrome characterized by intellectual disability, infantile epilepsy, congenital cataract, and feeding difficulties. Case Presentation: We report a new case with a neurodevelopmental disorder characterized by severe intellectual disability, infantile epilepsy, congenital cataract, and feeding difficulties. Brain MRI reveals brain dysplasia. We observe a de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1 gene in this case. Now, the child regularly goes to the hospital for rehabilitation training (once a month). Sodium Valproate (10 mg/kg/day) and Clobazam (10 mg/kg/day) are used in the treatment of epilepsy. A total of three articles were screened, and two papers were excluded. The search revealed one article related to a syndrome caused by a de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1; they screened the main clinical features of eight cases of a syndrome, which were summarized and analyzed. Conclusions: The NACC1 gene is a member of the BTB/POZ family of transcription factors. A de novo heterozygous c.892C>T (p.Arg298Trp) variant in the NACC1 may define a syndrome characterized by intellectual disability, infantile epilepsy, congenital cataract, and feeding difficulties. At present, there is no effective cure. In the future, we need more cases to determine the phenotype-genotype correlation of NACC1 variants. Many questions remain to be answered, and many challenges remain to be faced. Future transcriptional studies may further clarify this rare, recurrent variant, and could potentially lead to targeted therapies.
Collapse
Affiliation(s)
- Baiyu Lyu
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Kang
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|