1
|
He Q, Luo H, Mei J, Wang Z, Sun X, Wang L, Xie C. The association between accelerated biological aging and the risk of osteoarthritis: a cross-sectional study. Front Public Health 2024; 12:1451737. [PMID: 39324168 PMCID: PMC11423293 DOI: 10.3389/fpubh.2024.1451737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
Background Biological age (BA) offers an effective assessment of true aging state. The progression of Osteoarthritis (OA) is closely associated with an increase in chronological age, the correlation between BA and OA has not been fully elucidated. Methods This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. Thirteen commonly used clinical traits were employed to calculate two measures of BA: the Klemera-Doubal method age (KDM-Age) and phenotypic age (Pheno-Age). The residuals of the regression of these ages based on chronological age were calculated as KDM-Age or Pheno-Age acceleration, respectively. OA was determined through self-reported prior diagnoses. The prevalence of OA across different quartiles of BA was compared using weighted chi-square tests and linear trend tests. The association between BA and OA was assessed using weighted multivariate logistic regression models. Results A total of 30,547 participants aged ≥20 years were included in this study, 3,922 (14%) were diagnosed with OA. Participants with OA exhibited higher chronological age, KDM-Age, Pheno-Age, KDM-Age advance, and Pheno-Age advance compared to those without OA (p < 0.001). The prevalence of OA significantly increased with higher quartiles of KDM-Age advance and Pheno-Age advance (P for trend < 0.001). In the fully adjusted model, compared to the lowest quartile (Q1) of KDM-Age advance, the highest quartile (Q4) was associated with a 36.3% increased risk of OA (OR = 1.363; 95% CI = 1.213 to 1.532, p < 0.001). The highest quartile of Pheno-Age advance (Q4) was associated with a 24.3% increased risk of OA compared to Q1 (OR = 1.243; 95% CI = 1.113 to 1.389, p < 0.001). In males and young people, no statistical differences were found in OA risk between the highest and the lowest quartiles of KDM-Age advance (p = 0.151) and Pheno-Age advance (p = 0.057), respectively. Conclusion Adults with accelerated biological aging have an increased risk of OA, particularly among females and older adults.
Collapse
Affiliation(s)
- Qiang He
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua Luo
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jie Mei
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Wang
- QiQiHaEr City Traditional Chinese Medicine Hospital, QiQiHaEr, China
| | - Xin Sun
- Nanjing University of Chinese Medicine Affiliated Nanjing Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Ling Wang
- The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Chengxin Xie
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
He Q, Mei J, Xie C, Wang Z, Sun X, Xu M. The Relationship Between Central Obesity and Osteoarthritis in US Adults: The Mediating Role of Biological Aging Acceleration. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024:1-11. [PMID: 39230430 DOI: 10.1080/27697061.2024.2389398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE This study aims to investigate the association between central obesity and the risk of osteoarthritis, and the mediating role of biological age and biological aging advance in this relationship. METHODS The study is based on data from the National Health and Nutrition Examination Survey (NHANES) for the years 2005-2018. Thirteen commonly used clinical traits were used to calculate the Klemera-Doubal method age (KDM-Age) and phenotypic age (Pheno-Age) as two measures of biological aging. Additionally, KDM-Age advance and Pheno-Age advance were calculated as two measures of biological aging advance. Weighted multivariable logistic regression was used to analyze the association between central obesity and the risk of osteoarthritis (OA). Mediation analysis was then applied to elucidate the role of biological aging and biological aging advance in this relationship. RESULTS A total of 31,162 subjects aged ≥20 years were included in this study, of which 3,964 subjects reported having OA (14%). Compared to the Non-OA group, the OA group showed significantly higher proportions of central obesity, KDM-Age, KDM-Age advance, PhenoAge, and PhenoAge advance. Compared to the Non-central obesity group, the central obesity group had higher KDM-Age, KDM-Age advance, PhenoAge, PhenoAge advance, and a higher risk of OA (p < 0.05). Additionally, higher KDM-Age, KDM-Age advance, PhenoAge, and PhenoAge advance were positively correlated with the risk of OA (p < 0.05). Mediation analysis revealed that part of the association between central obesity and the risk of OA was mediated by KDM-Age, KDM-Age advance, PhenoAge, and PhenoAge advance (p < 0.05). CONCLUSION Central obesity increases the risk of OA, with part of this association being mediated by biological aging and biological aging advance.
Collapse
Affiliation(s)
- Qiang He
- Department of Orthopedic, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- Department of Orthopedic, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Jie Mei
- Department of Orthopedic, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Chengxin Xie
- Department of Orthopedic, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Wang
- Department of Orthopedic, QiQiHaEr City Traditional Chinese Medicine Hospital, Qiqihaer, China
| | - Xin Sun
- Department of Orthopedic, Nanjing University of Chinese Medicine Affiliated Nanjing Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Mengmeng Xu
- Department of Orthopedic, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| |
Collapse
|
3
|
Karal-ogly DD, Shumeev AN, Keburiya VV, Mintel MV, Rybtsov SA. Age-Related Changes in the Clustering of Blood Populations in Cynomolgus Monkeys Depend on Sex and Immune Status. Life (Basel) 2023; 13:life13020316. [PMID: 36836673 PMCID: PMC9965083 DOI: 10.3390/life13020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Non-anthropoid primates cynomolgus monkeys (Macaca fascicularis), also known as crab-eating macaques, are increasingly used in biomedical and preclinical studies due to their evolutionary proximity to humans, sharing similar diets, infectious and senile diseases. Age-related changes and sexual dimorphism of the immune system of C. monkeys have not been sufficiently characterized in literature, though age and sex differences affect the course of diseases and sensitivity to medications. Aging in C. monkeys is accompanied by an increase in CD3+CD4+CD8+ (DP-T) cells, plasma B-cells, and a decrease in platelets. Erythromyeloid bias has also been noticed in older animals. There was an increase in eosinophils, haematocrit (HCT) and haemoglobin concentration (HGB). Senile decline in the function of the immune system had sex differences. An increase in the number of monocytes, cytotoxic lymphocytes (CTL) and a decrease in the T-helper population were more pronounced in older females. A significant reduction in the number of B-cells and activated T-cells was detected in males only. A moderate correlation with the regression model of aging was established for DP-T, HCT and HGB. The reduction in the B cells count in males and the increase in CTL level in females are moderately correlated with age. Other blood cell populations did not show significant correlations in the regression models due to their high sample variability. The novel cell population CD3-CD20loCD16/CD56+, presumably NK-cells subset, was revealed. This cell population demonstrated an increase trend with age in both sexes. Population-statistical age norms for different sexes for young and very old macaques were established. The blood population clusters associated with sex and immune status in older animals were also identified.
Collapse
Affiliation(s)
| | - Alexander N. Shumeev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | | | - Marina V. Mintel
- The Research Institute of Medical Primatology, 354383 Sochi, Russia
| | - Stanislav A. Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
- Correspondence:
| |
Collapse
|
4
|
Berezina TN, Rybtsov SA. Use of Personal Resources May Influence the Rate of Biological Aging Depending on Individual Typology. Eur J Investig Health Psychol Educ 2022; 12:1793-1811. [PMID: 36547027 PMCID: PMC9778189 DOI: 10.3390/ejihpe12120126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Individual hobbies and interests, the ways of spending leisure time develop personal resources influencing health and wellbeing. The literature analysis helped selecting thirteen personal resources that also affect the rate of aging: sports, order, creativity, intellect, handwork, kindness, Humor, spirituality, risk, nature, achievements, optimism, communication. In 1632 people, (840 women and 792 men) personal resources were assessed using a questionnaire developed in-house. Biological age was determined by health indicators. The personal typology was determined by testing functional asymmetry, physique, interaction style, emotionality, profession, marital status, gender, age, and place of residence. The data were processed by correlation and cluster analysis and methods of automatic artificial neural networks (ANN). Personal resources were used as input continuous variables. Personality types were used as input categorical variables. The index of relative biological aging (RBA) was applied as an output continuous variable. We also calculated the correlation between the RBA index and the applied personal resources in different types of personalities. For most female types including investigative occupations, psychomotor emotionality, living in urban areas, asthenic physique, negative correlations were found between most personal resources and the aging index. In men, resources that slow down aging are found only for certain types: enterprising and conventional professions, ambidexter and left-handed, intellectual emotionality, athletic physique. In conclusion, with the help of the trained ANN, we selected personal resources that slow down aging. For women of all types, there are common resources reducing RBA index including nature, intellect, and achievements. For men, ANN was unable to find common resources that slow down aging. However, with an individual selection of resources, a trained neural network gives a favorable forecast of the ability to slow down the biological aging of a particular man by changing his hobbies and interests and ways of spending free time.
Collapse
Affiliation(s)
- Tatiana N. Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia
| | - Stanislav A. Rybtsov
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
- Correspondence:
| |
Collapse
|
5
|
Kassab A, Rizk N, Prakash S. The Role of Systemic Filtrating Organs in Aging and Their Potential in Rejuvenation Strategies. Int J Mol Sci 2022; 23:ijms23084338. [PMID: 35457154 PMCID: PMC9025381 DOI: 10.3390/ijms23084338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in aging studies brought about by heterochronic parabiosis suggest that aging might be a reversable process that is affected by changes in the systemic milieu of organs and cells. Given the broadness of such a systemic approach, research to date has mainly questioned the involvement of “shared organs” versus “circulating factors”. However, in the absence of a clear understanding of the chronological development of aging and a unified platform to evaluate the successes claimed by specific rejuvenation methods, current literature on this topic remains scattered. Herein, aging is assessed from an engineering standpoint to isolate possible aging potentiators via a juxtaposition between biological and mechanical systems. Such a simplification provides a general framework for future research in the field and examines the involvement of various factors in aging. Based on this simplified overview, the kidney as a filtration organ is clearly implicated, for the first time, with the aging phenomenon, necessitating a re-evaluation of current rejuvenation studies to untangle the extent of its involvement and its possible role as a potentiator in aging. Based on these findings, the review concludes with potential translatable and long-term therapeutics for aging while offering a critical view of rejuvenation methods proposed to date.
Collapse
Affiliation(s)
- Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| | - Nasser Rizk
- Department of Biomedical Sciences, College of Health Sciences-QU-Health, Qatar University, Doha 2713, Qatar
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2BA, Canada
| |
Collapse
|
6
|
Mammoto A, Matus K, Mammoto T. Extracellular Matrix in Aging Aorta. Front Cell Dev Biol 2022; 10:822561. [PMID: 35265616 PMCID: PMC8898904 DOI: 10.3389/fcell.2022.822561] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The aging population is booming all over the world and arterial aging causes various age-associated pathologies such as cardiovascular diseases (CVDs). The aorta is the largest elastic artery, and transforms pulsatile flow generated by the left ventricle into steady flow to maintain circulation in distal tissues and organs. Age-associated structural and functional changes in the aortic wall such as dilation, tortuousness, stiffening and losing elasticity hamper stable peripheral circulation, lead to tissue and organ dysfunctions in aged people. The extracellular matrix (ECM) is a three-dimensional network of macromolecules produced by resident cells. The composition and organization of key ECM components determine the structure-function relationships of the aorta and therefore maintaining their homeostasis is critical for a healthy performance. Age-associated remodeling of the ECM structural components, including fragmentation of elastic fibers and excessive deposition and crosslinking of collagens, is a hallmark of aging and leads to functional stiffening of the aorta. In this mini review, we discuss age-associated alterations of the ECM in the aortic wall and shed light on how understanding the mechanisms of aortic aging can lead to the development of efficient strategy for aortic pathologies and CVDs.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| | - Kienna Matus
- Department of Pediatrics, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| |
Collapse
|
7
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
8
|
Berezina T, Litvinova A, Zinatullina A. Interrelation of Individual-Personal Anti-Aging Strategies with Biological Age. СОВРЕМЕННАЯ ЗАРУБЕЖНАЯ ПСИХОЛОГИЯ 2022. [DOI: 10.17759/jmfp.2022110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
<p>The definition of anti-aging is given as a condition that reduces the biological age, improves health or increases life expectancy. Based on the meta-analysis, 13 anti-aging strategies were identified: sports, control, creative, intellectual, subject, altruistic, humor, self-improvement, risk, communication, interaction with nature, achievement, optimism. An empirical study of the effectiveness of these strategies has been carried out. Subjects: persons of retirement age, men — 61—70, women — 56—70 years. The following methods were used: diagnostics of biological age according to Voitenko, questionnaire of personal resources, assessment of individual typological features, correlation analysis. It was found out that the relationship of biological aging with personal resources depends on the socio-demographic characteristics of the individual. Conclusions: to develop an individual-personal anti-aging strategy, it is necessary to take into account the totality of data: gender, age, place of residence, family, children, physique, emotionality, functional asymmetry, interaction style. An effective anti-aging strategy is selected individually for each respondent.</p>
Collapse
|
9
|
Litvinova A, Berezina T, Kokurin A, Ekimova V. Psychological safety of students in interaction with virtual reality. СОВРЕМЕННАЯ ЗАРУБЕЖНАЯ ПСИХОЛОГИЯ 2022. [DOI: 10.17759/jmfp.2022110309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the current situation, the relevance of studying the problems of the psychological security of the individual, the conditions and technologies that ensure its safe formation and development is increasing. The article presents an overview of foreign studies of the peculiarities of the influence of virtual reality technologies on the psychological safety of students, specialists, pensioners in situations of specially organized training. The results of studies of the psychological safety of a person in the context of the development of cognitive abilities, psychological well-being, mental and psychological health are analyzed. It is shown that interventions in virtual reality and game models based on virtual reality technologies used in education allow students to overcome the risks and threats to psychological security. The necessity of developing virtual reality technologies is substantiated, taking into account the goals of training and the conditions for their use by students of different ages, in different professional fields and cultures to ensure the psychological safety of the individual.
Collapse
Affiliation(s)
| | | | - A.V. Kokurin
- Moscow State University of Psychology and Education
| | - V.I. Ekimova
- Moscow State University of Psychology & Education
| |
Collapse
|
10
|
Berezina TN, Rybtsov S. Acceleration of Biological Aging and Underestimation of Subjective Age Are Risk Factors for Severe COVID-19. Biomedicines 2021; 9:913. [PMID: 34440116 PMCID: PMC8389586 DOI: 10.3390/biomedicines9080913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
In an epidemic, it is important to have methods for reliable and rapid assessment of risk groups for severe forms of the disease for their priority vaccination and for the application of preventive lockdown measures. The aim of this study was to investigate risk factors for severe forms of COVID-19 in adults using indicators of biological and subjective aging. Longitudinal studies evaluated the severity of the disease and the number of cases. Respondents (447) were divided into "working group" and "risk group" (retirees with chronic diseases). During the lockdown period (in mid-2020), accelerated aging was observed in the group of workers (by 3.9-8 years for men and an increase at the tendency level for women). However, the respondents began to feel subjectively younger (by 3.3-7.2 years). In the risk group, there were no deviations from the expected biopsychological aging. The number of cases at the end of 2020 was 31% in workers and 0% in the risk group. Reasonably, the risk group followed the quarantine rules more strictly by 1.5 times. In working men, indicators of relative biological and relative subjective aging (measured in both 2019 and mid-2020) significantly influenced the incidence at the end of 2020. In women, only the indicators obtained in mid-2020 had a significant impact. The relative biological aging of an individual tested in the middle of 2020 had a direct impact on the risk of infection (p < 0.05) and on the probability of death (p < 0.0001). On the contrary, an increase in the relative subjective (psychological) aging index reduced the risk of infection (at the tendency level, p = 0.06) and the risk of death (p < 0.0001). Both the risk of infection and the risk of death increased with calendar age at the tendency level. Conclusions: Indicators of individual relative biological and subjective aging affect the probability of getting COVID-19 and its severity. The combination of high indicators of biological aging and underestimated indicators of subjective aging is associated with increased chances of developing severe forms of the disease.
Collapse
Affiliation(s)
- Tatiana N. Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, Shelepikhinskaya Naberezhnaya, 2A/1, Office 207, 123290 Moscow, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|