1
|
Farmani D, Moteshakereh SM, Nikoohemmat M, Askari R, Salehi S, Haghparast A. Restraint stress-induced antinociceptive effects in acute pain: Involvement of orexinergic system in the nucleus accumbens. Behav Brain Res 2024; 472:115133. [PMID: 38960330 DOI: 10.1016/j.bbr.2024.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The complicated relevance between stress and pain has been identified. Neurotransmitters and neuropeptides of various brain areas play a role in this communication. Pain inhibitory response is known as stress-induced analgesia (SIA). The studies demonstrated that the nucleus accumbens (NAc) is critical in modulating pain. As a neuropeptide, orexin is crucially involved in initiating behavioral and physiological responses to threatening and unfeeling stimuli. However, the role of the orexin receptors of the NAc area after exposure to restraint stress (RS) as acute physical stress in the modulation of acute pain is unclear. One hundered twenty adult male albino Wistar rats (230-250 g) were used. Animals were unilaterally implanted with cannulae above the NAc. The SB334867 and TCS OX2 29 were used as antagonists for OX1r and OX2r, respectively. Different doses of the antagonists (1, 3, 10, and 30 nmol/0.5 µl DMSO) were microinjected intra-NAc five minutes before exposure to RS (3 hours). Then, the tail-flick test as a model of acute pain was performed, and the nociceptive threshold (Tail-flick latency; TFL) was measured in 60-minute time set intervals. According to this study's findings, the antinociceptive effects of RS in the tail-flick test were blocked during intra-NAc administration of SB334867 or TCS OX2 29. The RS as acute stress increased TFL and deceased pain-like behavior responses. The 50 % effective dose values of the OX1r and OX2r antagonists were 12.82 and 21.64 nmol, respectively. The result demonstrated contribution of the OX1r into the NAc was more remarkable than that of the OX2r on antinociceptive responses induced by the RS. Besides, in the absence of RS, the TFL was attenuated. The current study's data indicated that OX1r and OX2r into the NAc induced pain modulation responses during RS in acute pain. In conclusion, the findings revealed the involvement of intra-NAc orexin receptors in improving SIA.
Collapse
Affiliation(s)
- Danial Farmani
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nikoohemmat
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Askari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Salehi
- Department of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tian Y, Yang XW, Chen L, Xi K, Cai SQ, Cai J, Yang XM, Wang ZY, Li M, Xing GG. Activation of CRF/CRFR1 Signaling in the Central Nucleus of the Amygdala Contributes to Chronic Stress-Induced Exacerbation of Neuropathic Pain by Enhancing GluN2B-NMDA Receptor-Mediated Synaptic Plasticity in Adult Male Rats. THE JOURNAL OF PAIN 2024; 25:104495. [PMID: 38354968 DOI: 10.1016/j.jpain.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Exacerbation of pain by chronic stress and comorbidity of pain with stress-related disorders such as depression and post-traumatic stress disorder, represent significant clinical challenges. Previously we have documented that chronic forced swim (FS) stress exacerbates neuropathic pain in spared nerve injury (SNI) rats, associated with an up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (GluN2B-NMDARs) in the central nucleus of the amygdala (CeA). However, the molecular mechanisms underlying chronic FS stress (CFSS)-mediated exacerbation of pain sensitivity in SNI rats still remain unclear. In this study, we demonstrated that exposure of CFSS to rats activated the corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the CeA, which was shown to be necessary for CFSS-induced depressive-like symptoms in stressed rats, and as well, for CFSS-induced exacerbation of pain hypersensitivity in SNI rats exposed to chronic FS stress. Furthermore, we discovered that activation of CRF/CRFR1 signaling in the CeA upregulated the phosphorylation of GluN2B-NMDARs at tyrosine 1472 (pGluN2BY1472) in the synaptosomal fraction of CeA, which is highly correlated to the enhancement of synaptic GluN2B-NMDARs expression that has been observed in the CeA in CFSS-treated SNI rats. In addition, we revealed that activation of CRF/CRFR1 signaling in the CeA facilitated the CFSS-induced reinforcement of long-term potentiation as well as the enhancement of NMDAR-mediated excitatory postsynaptic currents in the basolateral amygdala (BLA)-CeA pathway in SNI rats. These findings suggest that activation of CRF/CRFR1 signaling in the CeA contributes to chronic stress-induced exacerbation of neuropathic pain by enhancing GluN2B-NMDAR-mediated synaptic plasticity in rats subjected to nerve injury. PERSPECTIVE: Our present study provides a novel mechanism for elucidating stress-induced hyperalgesia and highlights that the CRF/CRFR1 signaling and the GluN2B-NMDAR-mediated synaptic plasticity in the CeA may be important as potential therapeutic targets for chronic stress-induced pain exacerbation in human neuropathic pain. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Yue Tian
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Xue-Wei Yang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Lin Chen
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Ke Xi
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Si-Qing Cai
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhi-Yong Wang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Guo-Gang Xing
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China; Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Zheng H, Kim M, Kim C, Kim Y, Cho PS, Lim JY, Lee H, Yun HI, Choi J, Hwang SW. GnRH peripherally modulates nociceptor functions, exacerbating mechanical pain. Front Mol Neurosci 2024; 17:1160435. [PMID: 38783903 PMCID: PMC11111891 DOI: 10.3389/fnmol.2024.1160435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The function of peripheral nociceptors, the neurons that relay pain signals to the brain, are frequently tuned by local and systemic modulator substances. In this context, neurohormonal effects are emerging as an important modulatory mechanism, but many aspects remain to be elucidated. Here we report that gonadotropin-releasing hormone (GnRH), a brain-specific neurohormone, can aggravate pain by acting on nociceptors in mice. GnRH and GnRHR, the receptor for GnRH, are expressed in a nociceptor subpopulation. Administration of GnRH and its analogue, localized for selectively affecting the peripheral neurons, deteriorated mechanical pain, which was reproducible in neuropathic conditions. Nociceptor function was promoted by GnRH treatment in vitro, which appears to involve specific sensory transient receptor potential ion channels. These data suggest that peripheral GnRH can positively modulate nociceptor activities in its receptor-specific manner, contributing to pain exacerbation. Our study indicates that GnRH plays an important role in neurohormonal pain modulation via a peripheral mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Párraga JP, Castellanos A. A Manifesto in Defense of Pain Complexity: A Critical Review of Essential Insights in Pain Neuroscience. J Clin Med 2023; 12:7080. [PMID: 38002692 PMCID: PMC10672144 DOI: 10.3390/jcm12227080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic pain has increasingly become a significant health challenge, not just as a symptomatic manifestation but also as a pathological condition with profound socioeconomic implications. Despite the expansion of medical interventions, the prevalence of chronic pain remains remarkably persistent, prompting a turn towards non-pharmacological treatments, such as therapeutic education, exercise, and cognitive-behavioral therapy. With the advent of cognitive neuroscience, pain is often presented as a primary output derived from the brain, aligning with Engel's Biopsychosocial Model that views disease not solely from a biological perspective but also considering psychological and social factors. This paradigm shift brings forward potential misconceptions and over-simplifications. The current review delves into the intricacies of nociception and pain perception. It questions long-standing beliefs like the cerebral-centric view of pain, the forgotten role of the peripheral nervous system in pain chronification, misconceptions around central sensitization syndromes, the controversy about the existence of a dedicated pain neuromatrix, the consciousness of the pain experience, and the possible oversight of factors beyond the nervous system. In re-evaluating these aspects, the review emphasizes the critical need for understanding the complexity of pain, urging the scientific and clinical community to move beyond reductionist perspectives and consider the multifaceted nature of this phenomenon.
Collapse
Affiliation(s)
- Javier Picañol Párraga
- Laboratory of Neurophysiology, Biomedicine Department, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
| | | |
Collapse
|
5
|
Deal B, Phillips K, Crelli C, Janjic JM, Pollock JA. RNA-Seq Reveals Sex Differences in Gene Expression during Peripheral Neuropathic Inflammation and in Pain Relief from a COX-2 Inhibiting Theranostic Nanoemulsion. Int J Mol Sci 2023; 24:ijms24119163. [PMID: 37298117 DOI: 10.3390/ijms24119163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Given decades of neuroinflammatory pain research focused only on males, there is an urgent need to better understand neuroinflammatory pain in females. This, paired with the fact that currently there is no long-term effective treatment for neuropathic pain furthers the need to evaluate how neuropathic pain develops in both sexes and how it can be relieved. Here we show that chronic constriction injury of the sciatic nerve caused comparable levels of mechanical allodynia in both sexes. Using a COX-2 inhibiting theranostic nanoemulsion with increased drug loading, both sexes achieved similar reduction in mechanical hypersensitivity. Given that both sexes have improved pain behavior, we specifically explored differential gene expression between sexes in the dorsal root ganglia (DRG) during pain and relief. Total RNA from the DRG revealed a sexually dimorphic expression for injury and relief caused by COX-2 inhibition. Of note, both males and females experience increased expression of activating transcription factor 3 (Atf3), however, only the female DRG shows decreased expression following drug treatment. Alternatively, S100A8 and S100A9 expression appear to play a sex specific role in relief in males. The sex differences in RNA expression reveal that comparable behavior does not necessitate the same gene expression.
Collapse
Affiliation(s)
- Brooke Deal
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, PA 15282, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| | - Katherine Phillips
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, PA 15282, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| | - Caitlin Crelli
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jelena M Janjic
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John A Pollock
- Department of Biological Sciences, School of Science & Engineering, Duquesne University, Pittsburgh, PA 15282, USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
6
|
Ramasamy R, Baker DS, Lemtiri-Chlieh F, Rosenberg DA, Woon E, Al-Naggar IM, Hardy CC, Levine ES, Kuchel GA, Bartley JM, Smith PP. Loss of resilience contributes to detrusor underactivity in advanced age. Biogerontology 2023; 24:163-181. [PMID: 36626035 PMCID: PMC10006334 DOI: 10.1007/s10522-022-10005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
Volume hyposensitivity resulting from impaired sympathetic detrusor relaxation during bladder filling contributes to detrusor underactivity (DU) associated with aging. Detrusor tension regulation provides an adaptive sensory input of bladder volume to the brainstem and is challenged by physiological stressors superimposed upon biological aging. We recently showed that HCN channels have a stabilizing role in detrusor sympathetic relaxation. While mature mice maintain homeostasis in the face of stressors, old mice are not always capable. In old mice, there is a dichotomous phenotype, in which resilient mice adapt and maintain homeostasis, while non-resilient mice fail to maintain physiologic homeostasis. In this DU model, we used cystometry as a stressor to categorize mice as old-responders (old-R, develop a filling/voiding cycle) or old-non-responders (old-NR, fail to develop a filling/voiding cycle; fluctuating high pressures and continuous leaking), while also assessing functional and molecular differences. Lamotrigine (HCN activator)-induced bladder relaxation is diminished in old-NR mice following HCN-blockade. Relaxation responses to NS 1619 were reduced in old-NR mice, with the effect lost following HCN-blockade. However, RNA-sequencing revealed no differences in HCN gene expression and electrophysiology studies showed similar percentage of detrusor myocytes expressing HCN (Ih) current between old-R and old-NR mice. Our murine model of DU further defines a role for HCN, with failure of adaptive recalibration of HCN participation and intensity of HCN-mediated stabilization, while genomic studies show upregulated myofibroblast and fibrosis pathways and downregulated neurotransmitter-degradation pathways in old-NR mice. Thus, the DU phenotype is multifactorial and represents the accumulation of age-associated loss in homeostatic mechanisms.
Collapse
Affiliation(s)
- Ramalakshmi Ramasamy
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Dylan S Baker
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Fouad Lemtiri-Chlieh
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Dawn A Rosenberg
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric Woon
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Cara C Hardy
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - George A Kuchel
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
| | - Jenna M Bartley
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Phillip P Smith
- UConn Center on Aging, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-8073, USA
- Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
7
|
Kim Y, Kim C, Lee H, Kim M, Zheng H, Lim JY, Yun HI, Jeon M, Choi J, Hwang SW. Gpr83 Tunes Nociceptor Function, Controlling Pain. Neurotherapeutics 2023; 20:325-337. [PMID: 36352334 PMCID: PMC10119354 DOI: 10.1007/s13311-022-01327-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
The function of peripheral nociceptors is frequently tuned by the action of G protein-coupled receptors (GPRs) that are expressed in them, which contribute to pain alteration. Expanding new information on such GPRs and predicting their potential outcomes can help to construct new analgesic strategies based on their modulations. In this context, we attempted to present a new GPR not yet acknowledged for its pain association. Gpr83 exhibits relatively high expressions in the peripheral nervous system compared to other tissues when we mined and reconstructed Gene Expression Omnibus (GEO) metadata, which we confirmed using immunohistochemistry on murine dorsal root ganglia (DRG). When Gpr83 expression was silenced in DRG, neuronal and behavioral nociception were all downregulated. Pathologic pain in hind paw inflammation and chemotherapy-induced peripheral neuropathy were also alleviated by this Gpr83 knockdown. Dependent on exposure time, the application of a known endogenous Gpr83 ligand PEN showed differential effects on nociceptor responses in vitro. Localized PEN administration mitigated pain in vivo, probably following Gq/11-involved GPR downregulation caused by the relatively constant exposure. Collectively, this study suggests that Gpr83 action contributes to the tuning of peripheral pain sensitivity and thus indicates that Gpr83 can be among the potential GPR targets for pain modulation.
Collapse
Affiliation(s)
- Yerin Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Chaeeun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Hojin Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Minseok Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Haiyan Zheng
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Hye-In Yun
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Minji Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Korea.
| |
Collapse
|
8
|
Steinhauff D, Jensen MM, Griswold E, Jedrzkiewicz J, Cappello J, Oottamasathien S, Ghandehari H. An Oligomeric Sulfated Hyaluronan and Silk-Elastinlike Polymer Combination Protects against Murine Radiation Induced Proctitis. Pharmaceutics 2022; 14:pharmaceutics14010175. [PMID: 35057068 PMCID: PMC8777937 DOI: 10.3390/pharmaceutics14010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Semisynthetic glycosaminoglycan ethers (SAGEs) are short, sulfated hyaluronans which combine the natural properties of hyaluronan with chemical sulfation. In a murine model, SAGEs provide protection against radiation induced proctitis (RIP), a side effect of lower abdominal radiotherapy for cancer. The anti-inflammatory effects of SAGE have been studied in inflammatory diseases at mucosal barrier sites; however, few mechanisms have been uncovered necessitating high throughput methods. SAGEs were combined with silk-elastinlike polymers (SELPs) to enhance rectal accumulation in mice. After high radiation exposure to the lower abdominal area, mice were followed for 3 days or until they met humane endpoints, before evaluation of behavioral pain responses and histological assessment of rectal inflammation. RNA sequencing was conducted on tissues from the 3-day cohort to determine molecular mechanisms of SAGE–SELP. After 3 days, mice receiving the SAGE–SELP combination yielded significantly lowered pain responses and amelioration of radiation-induced rectal inflammation. Mice receiving the drug–polymer combination survived 60% longer than other irradiated mice, with a fraction exhibiting long term survival. Sequencing reveals varied regulation of toll like receptors, antioxidant activities, T-cell signaling, and pathways associated with pain. This investigation elucidates several molecular mechanisms of SAGEs and exhibits promising measures for prevention of RIP.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Martin Jensen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.M.J.); (S.O.)
| | - Ethan Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA;
| | - Siam Oottamasathien
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.M.J.); (S.O.)
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA;
- Correspondence:
| |
Collapse
|
9
|
Functional and Anatomical Characterization of Corticotropin-Releasing Factor Receptor Subtypes of the Rat Spinal Cord Involved in Somatic Pain Relief. Mol Neurobiol 2021; 58:5459-5472. [PMID: 34331656 PMCID: PMC8599353 DOI: 10.1007/s12035-021-02481-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Corticotropin-releasing factor (CRF) orchestrates our body’s response to stressful stimuli. Pain is often stressful and counterbalanced by activation of CRF receptors along the nociceptive pathway, although the involvement of the CRF receptor subtypes 1 and/or 2 (CRF-R1 and CRF-R2, respectively) in CRF-induced analgesia remains controversial. Thus, the aim of the present study was to examine CRF-R1 and CRF-R2 expression within the spinal cord of rats with Freund’s complete adjuvant-induced unilateral inflammation of the hind paw using reverse transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis. Moreover, the antinociceptive effects of intrathecal (i.t.) CRF were measured by paw pressure algesiometer and their possible antagonism by selective antagonists for CRF-R1 and/or CRF-R2 as well as for opioid receptors. Our results demonstrated a preference for the expression of CRF-R2 over CRF-R1 mRNA, protein, binding sites and immunoreactivity in the dorsal horn of the rat spinal cord. Consistently, CRF as well as CRF-R2 agonists elicited potent dose-dependent antinociceptive effects which were antagonized by the i.t. CRF-R2 selective antagonist K41498, but not by the CRF-R1 selective antagonist NBI35965. In addition, i.t. applied opioid antagonist naloxone dose-dependently abolished the i.t. CRF- as well as CRF-R2 agonist-elicited inhibition of somatic pain. Importantly, double immunofluorescence confocal microscopy of the spinal dorsal horn showed CRF-R2 on enkephalin (ENK)-containing inhibitory interneurons in close opposition of incoming mu-opioid receptor-immunoreactive nociceptive neurons. CRF-R2 was, however, not seen on pre- or on postsynaptic sensory neurons of the spinal cord. Taken together, these findings suggest that i.t. CRF or CRF-R2 agonists inhibit somatic inflammatory pain predominantly through CRF-R2 receptors located on spinal enkephalinergic inhibitory interneurons which finally results in endogenous opioid-mediated pain inhibition.
Collapse
|
10
|
Tanaka M, Török N, Tóth F, Szabó Á, Vécsei L. Co-Players in Chronic Pain: Neuroinflammation and the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021; 9:biomedicines9080897. [PMID: 34440101 PMCID: PMC8389666 DOI: 10.3390/biomedicines9080897] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic pain is an unpleasant sensory and emotional experience that persists or recurs more than three months and may extend beyond the expected time of healing. Recently, nociplastic pain has been introduced as a descriptor of the mechanism of pain, which is due to the disturbance of neural processing without actual or potential tissue damage, appearing to replace a concept of psychogenic pain. An interdisciplinary task force of the International Association for the Study of Pain (IASP) compiled a systematic classification of clinical conditions associated with chronic pain, which was published in 2018 and will officially come into effect in 2022 in the 11th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-11) by the World Health Organization. ICD-11 offers the option for recording the presence of psychological or social factors in chronic pain; however, cognitive, emotional, and social dimensions in the pathogenesis of chronic pain are missing. Earlier pain disorder was defined as a condition with chronic pain associated with psychological factors, but it was replaced with somatic symptom disorder with predominant pain in the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) in 2013. Recently clinical nosology is trending toward highlighting neurological pathology of chronic pain, discounting psychological or social factors in the pathogenesis of pain. This review article discusses components of the pain pathway, the component-based mechanisms of pain, central and peripheral sensitization, roles of chronic inflammation, and the involvement of tryptophan-kynurenine pathway metabolites, exploring the participation of psychosocial and behavioral factors in central sensitization of diseases progressing into the development of chronic pain, comorbid diseases that commonly present a symptom of chronic pain, and psychiatric disorders that manifest chronic pain without obvious actual or potential tissue damage.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - Fanni Tóth
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
| | - Ágnes Szabó
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
- Correspondence: ; Tel.: +36-62-545-351
| |
Collapse
|